Revisión de cianobacterias potencialmente nocivas
DOI:
https://doi.org/10.24850/j-tyca-14-03-06Palabras clave:
cianobacteria, cianofan, cianotoxinas, microcistinasResumen
Se desarrolló una revisión bibliográfica a través de la consulta de diversas fuentes de información (artículos, libros, resúmenes, etc.) obtenidas de diversas bases de datos como Web of Science, Scopus y Biological abstracts, entre otras. Se describen de forma cronológica los estudios más relevantes de las últimas tres décadas, partiendo de investigaciones históricas, así como tópicos actuales bajo diversos subtemas; se analizaron críticamente cerca de 200 de artículos con el objetivo de exponer de manera sencilla, pero explícita, las características generales de las cianobacterias; las principales condiciones que favorecen la formación y persistencia de los florecimientos o “CianoFANs”; las implicaciones negativas sobre los recursos hídricos debido a la producción de cianotoxinas, con énfasis en los límites de referencia establecidos para la hepatotoxina microcistina-LR en agua de consumo humano, en sistemas de uso recreativo y en productos alimenticios; las metodologías desarrolladas para el monitoreo de cepas tóxicas, y un resumen de las investigaciones publicadas en México sobre cianobacterias y sus toxinas. Por último, se discuten algunos procedimientos de control usados en remediación de sistemas con proliferación de cianobacterias.
Citas
Adamovský, O., Kopp, R., Hilscherová, K., Babica, P., Palíková, M., Pašková, V., & Bláha, L. (2007). Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. Environmental Toxicology and Chemistry: An International Journal, 26(12), 2687-2693. DOI: https://doi.org/10.1897/07-213.1
Albrecht, M., Pröschold, T., & Schumann, R. (2017). Identification of Cyanobacteria in a eutrophic coastal lagoon on the Southern Baltic Coast. Frontiers in Microbiology, 8, 923. DOI: https://doi.org/10.3389/fmicb.2017.00923
Alcocer, J., Kato, E., Robles, E., & Vilaclara, G. (1988). Estudio preliminar del efecto del dragado sobre el estado trófico del Lago Viejo de Chapultepec. Revista Internacional de Contaminación Ambiental, 4(1), 43-56.
Alva-Martínez, A. A., Sarma, S. S. S., & Nandini, S. (2007a). Population dynamics of Brachionus calyciflorus and Brachionus havanaensis (Rotifera) on mixed diets with Microcystis aeruginosa and green algae. Hidrobiológica, 17(Su1), 59-67.
Alva-Martínez, A. F., Sarma, S. S. S., & Nandini, S. (2007b). Effect of mixed diets (cyanobacteria and green algae) on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Aquatic Ecology, 41(4), 579-585. DOI: https://doi.org/10.1007/s10452-007-9115-1
Alva-Martínez, A. F., Fernández, R., Sarma, S. S. S., & Nandini, S. (2009). Effect of mixed toxic diets (Microcystis and Chlorella) on the rotifers Brachionus calyciflorus and Brachionus havanaensis cultured alone and together. Limnologica, 39(4), 302-305. DOI: https://doi.org/10.1016/j.limno.2009.06.002
Arzate-Cárdenas, M. A., Olvera-Ramirez, R., & Martinez-Jeronimo, F. (2010). Microcystis toxigenic strains in urban lakes: A case of study in Mexico City. Ecotoxicology, 19(6), 1157-1165. DOI: https://doi.org/10.1007/s10646-010-0499-7
Azevedo, S. M., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 181, 441-446. DOI: https://doi.org/10.1016/S0300-483X(02)00491-2
Baker, L., Sendall, B. C., Gasser, R. B., Menjivar, T., Neilan, B. A., & Jex, A. R. (2013). Rapid, multiplex-tandem PCR assay for automated detection and differentiation of toxigenic cyanobacterial blooms. Molecular and Cellular Probes, 27(5-6), 208-214. DOI: https://doi.org/10.1016/j.mcp.2013.07.001.
Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: Identification, enumeration and use as bioindicators. Hoboken, USA: John Wiley & Sons.
Bergman, B., Sandh, G., Lin, S., Larsson, J., & Carpenter, E. J. (2013). Trichodesmium–A widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Reviews, 37(3), 286-302. DOI: https://doi.org/10.1111/j.1574-6976.2012.00352.x
Berman-Frank, I., Quigg, A., Finkel, Z. V., Irwin, A. J., & Haramaty, L. (2007). Nitrogen‐fixation strategies and Fe requirements in cyanobacteria. Limnology and Oceanography, 52(5), 2260-2269. DOI: https://doi.org/10.4319/lo.2007.52.5.2260
Berry, J. (2013). Cyanobacterial toxins in food-webs: implications for human and environmental health. In: Current Topics in Public Health. London, UK: IntechOpen. DOI: 10.5772/55111
Berry, J. P., & Lind, O. (2010a). First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon, 55(5), 930-938. DOI: https://doi.org/10.1016/j.toxicon.2009.07.035
Berry, J. P., & Lind, O. (2010b). First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon, 55(5), 930-938. DOI: https://doi.org/10.1016/j.toxicon.2009.07.035
Berry, J. P., Jaja-Chimedza, A., Dávalos-Lind, L., & Lind, O. (2012). Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Additives & Contaminants: Part A, 29(2), 314-321. DOI: https://doi.org/10.1080/19440049.2011.597785
Bláha, L., Cameán, A. M., Fessard, V., Gutiérrez‐Praena, D., Jos, Á., Marie, B., & Žegura, B. (2017). Bioassay use in the field of toxic cyanobacteria. In: Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis (pp. 272-279). Chichester, UK: John Wiley & Sons, Ltd.
Bouaïcha, N., Miles, C. O., Beach, D. G., Labidi, Z., Djabri, A., Benayache, N. Y., & Nguyen-Quang, T. (2019). Structural diversity, characterization and toxicology of microcystins. Toxins, 11(12), 714.
Brinkman, D. L., & Bourne, D. G. (2013). Microcystinase. In: Handbook of Proteolytic Enzymes (pp. 1726-1731). Cambridge, USA: Academic Press. DOI: https://doi.org/10.3390/toxins11120714
Bulgakov, N. G., & Levich, A. P. (1999). The nitrogen: Phosphorus ratio as a factor regulating phytoplankton community structure. Archiv für hydrobiologie, 3-22. DOI: 10.1127/archiv-hydrobiol/146/1999/3
Bumke‐Vogt, C., Mailahn, W., & Chorus, I. (1999). Anatoxin‐a and neurotoxic cyanobacteria in German lakes and reservoirs. Environmental Toxicology: An International Journal, 14(1), 117-125. DOI: https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<117::AID-TOX15>3.0.CO;2-V
Campos, A., & Vasconcelos, V. (2010). Molecular mechanisms of microcystin toxicity in animal cells. International Journal of Molecular Sciences, 11(1), 268-287. DOI: https://doi.org/10.3390/ijms11010268
Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., & Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46(5), 1394-1407. DOI: https://doi.org/10.1016/j.watres.2011.12.016
Carmichael, W. W. (2001). Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Human and Ecological Risk Assessment: An International Journal, 7(5), 1393-1407. DOI: https://doi.org/10.1080/20018091095087
Carmichael, W. W., Azevedo, S. M., An, J. S., Molica, R. J., Jochimsen, E. M., Lau, S., & Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives, 109(7), 663-668. DOI: https://doi.org/10.1289/ehp.01109663
Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Cochran, P. A., Elser, J. J., Elser, M. M., & von Ende, C. (1987). Regulation of lake primary productivity by food web structure. Ecology, 68(6), 1863-1876. DOI: https://doi.org/10.2307/1939878
Castle, J. W., & Rodgers, J. H. (2009). Hypothesis for the role of toxin-producing algae in Phanerozoic mass extinctions based on evidence from the geologic record and modern environments. Environmental Geosciences, 16(1), 1-23. DOI: https://doi.org/10.1306/eg.08110808003
Catherine, A., Bernard, C., Spoof, L., & Bruno, M. (2017). Microcystins and nodularins. In: Meriluoto, J., Spoof, L., & Codd, J. (eds.). Handbook of cyanobacterial monitoring and cyanotoxin analysis (pp. 109-126). DOI:10.1002/9781119068761
Chapra, S. C., Boehlert, B., Fant, C., Bierman Jr., V. J., Henderson, J., Mills, D., & Strzepek, K. M. (2017). Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environmental Science & Technology, 51(16), 8933-8943. DOI: https://doi.org/10.1021/acs.est.7b01498
Chien, Y. C., Wu, S. C., Chen, W. C., & Chou, C. C. (2013). Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environmental Engineering Science, 30(4), 179-186. DOI: https://doi.org/10.1089/ees.2012.0318
Chorus, I., & Bartram, J. (eds.). (1999). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. Boca Raton, USA: CRC Press.
Churro, C., Dias, E., & Valério, E. (2012). Risk assessment of cyanobacteria and cyanotoxins, the particularities and challenges of Planktothrix spp. monitoring. In: Novel approaches and their applications in risk assessment. London, UK: IntechOpen
Churro, C., Semedo-Aguiar, A. P., Silva, A. D., Pereira-Leal, J. B., & Leite, R. B. (2020). A novel cyanobacterial geosmin producer, revising Geo A distribution and dispersion patterns in Bacteria. Scientific Reports, 10(1), 1-18. DOI: https://doi.org/10.1038/s41598-020-64774-y
Cirés, G. S. (2012) Ecofisiología, ciclos de vida anual y cianotoxinas de las cianobacterias planctónicas Anabaena, Aphanizomenon y Microcystis en embalses españoles (tesis de doctorado). Universidad Autónoma de Madrid, España.
Cirés, S., Wörmer, L., Agha, R., & Quesada, A. (2013). Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. Journal of Plankton Research, 35(6), 1254-1266. DOI: https://doi.org/10.1093/plankt/fbt081
Codd, G. A., Metcalf, J. S., Ward, C. J., Beattie, K. A., Bell, S. G., Kaya, K., & Poon, G. K. (2001). Analysis of cyanobacterial toxins by physicochemical and biochemical methods. Journal of AOAC International, 84(5), 1626-1635. DOI: https://doi.org/10.1093/jaoac/84.5.1626
Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005a). Cyanobacterial toxins: Risk management for health protection. Toxicology and Applied Pharmacology, 203(3), 264-272. DOI: https://doi.org/10.1016/j.taap.2004.02.016
Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F., & Metcalf, J. S. (2005b). Harmful Cyanobacteria. In: Huisman, J., Matthijs, H. C., Visser, P. M. (eds.). Harmful Cyanobacteria. Aquatic Ecology Series, vol 3. Dordrecht, The Netherlands: Springer. Recuperado de https://doi.org/10.1007/1-4020-3022-3_1
Costa, M. L., Rodrigues, J. A., Azevedo, J., Vasconcelos, V., Eiras, E., & Campos, M. G. (2018). Hepatotoxicity induced by paclitaxel interaction with turmeric in association with a microcystin from a contaminated dietary supplement. Toxicon, 150, 207-211. DOI: https://doi.org/10.1016/j.toxicon.2018.05.022
Dai, R., Wang, P., Jia, P., Zhang, Y., Chu, X., & Wang, Y. (2016). A review on factors affecting microcystins production by algae in aquatic environments. World Journal of Microbiology and Biotechnology, 32(3), 51. DOI: https://doi.org/10.1007/s11274-015-2003-2
DeMott, W. R., Gulati, R. D., & Van Donk, E. (2001). Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large‐bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography, 46(8), 2054-2060. DOI: https://doi.org/10.4319/lo.2001.46.8.2054
DeMott, W. R., Zhang, Q. X., & Carmichael, W. W. (1991). Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology and Oceanography, 36(7), 1346-1357. DOI: https://doi.org/10.4319/lo.1991.36.7.1346
Deshpande, B. N., Tremblay, R., Pienitz, R., & Vincent, W. F. (2014). Sedimentary pigments as indicators of cyanobacterial dynamics in a hypereutrophic lake. Journal of Paleolimnology, 52(3), 171-184. DOI: https://doi.org/10.1007/s10933-014-9785-3
Dickman, E. M., Newell, J. M., González, M. J., & Vanni, M. J. (2008). Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences, 105(47), 18408-18412. DOI: ttps://doi.org/10.1073/pnas.0805566105
Drobac, D., Tokodi, N., Lujić, J., Marinović, Z., Subakov-Simić, G., Dulić, T., & Svirčev, Z. (2016). Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae, 55, 66-76. DOI: https://doi.org/10.1016/j.hal.2016.02.007
Drobac, D., Tokodi, N., Simeunović, J., Baltić, V., Stanić, D., & Svirčev, Z. (2013). Human exposure to cyanotoxins and their effects on health. Arhiv za Higijenu Rada i Toksikologiju, 64(2), 305-315. DOI: https://doi.org/10.2478/10004-1254-64-2013-2320
Edwards, C., & Lawton, L. A. (2009). Bioremediation of cyanotoxins. Advances in Applied Microbiology, 67, 109-129. DOI: https://doi.org/10.1016/S0065-2164(08)01004-6.
Fawell, J. K., James, C. P., & James, H. A. (1994). Toxins from blue-green algae: Toxicological assessment of microcystin-LR and a method for its determination in water. Foundation for Water Research. DOI: https://doi.org/10.1177/096032719901800305
Fernández, R., Nandini, S., Sarma, S. S. S., & Castellanos-Páez, M. E. (2016). Demographic responses of Heterocypris incongruens (Ostracoda) related to stress factors of competition, predation and food. Journal of Limnology, 75(s1), 31-38. DOI: 10.4081/jlimnol.2016.1367
Fernández, R., Nandini, S., Sarma, S. S. S., & Castellanos‐Páez, M. E. (2014). Effects of cyanobacteria, fish kairomones, and the presence of ostracods on the demography of Simocephalus vetulus (Cladocera). Invertebrate Biology, 133(4), 371-380. DOI: https://doi.org/10.1111/ivb.12069
Ferrão-Filho, A. D. S., & Kozlowsky-Suzuki, B. (2011). Cyanotoxins: Bioaccumulation and effects on aquatic animals. Marine Drugs, 9(12), 2729-2772. DOI: https://doi.org/10.3390/md9122729
Figueroa-Sánchez, M. A., Nandini, S., Castellanos-Páez, M. E., & Sarma, S. S. S. (2019). Effect of temperature, food quality and quantity on the feeding behavior of Simocephalus mixtus and Hyalella azteca: Implications for biomanipulation. Wetlands Ecology and Management, 27(2-3), 353-361. DOI: https://doi.org/10.1007/s11273-019-09664-5
Flores, E., & Herrero, A. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochemical Society Transactions, 33(1), 164-167. DOI: https://doi.org/10.1042/BST0330164
Flores, E., & Herrero, A. (2014). The cell biology of cyanobacteria. Wymondham, UK: Caister Academic Press.
Fontanillo, M., & Köhn, M. (2018). Microcystins: Synthesis and structure–activity relationship studies toward PP1 and PP2A. Bioorganic & Medicinal Chemistry, 26(6), 1118-1126. DOI: https://doi.org/10.1016/j.bmc.2017.08.040
Foss, A. J., & Aubel, M. T. (2013). The extraction and analysis of cylindrospermopsin from human serum and urine. Toxicon, 70, 54-61. DOI: https://doi.org/10.1016/j.toxicon.2013.04.007
Gaytan-Herrera, M. L., Martinez-Almeida, V., Oliva-Martinez, M. G., Duran-Diaz, A., & Ramirez-Garcia, P. (2011). Temporal variation of phytoplankton from the tropical reservoir Valle de Bravo, Mexico. Journal of Environmental Biology, 32(1), 117-126.
Ger, K. A., Hansson, L. A., & Lürling, M. (2014). Understanding cyanobacteria‐zooplankton interactions in a more eutrophic world. Freshwater Biology, 59(9), 1783-1798. DOI: https://doi.org/10.1111/fwb.12393
Ger, K. A., Naus‐Wiezer, S., De-Meester, L., & Lürling, M. (2019). Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnology and Oceanography, 64(3), 1214-1227. DOI: https://doi.org/10.1002/lno.11108
Ghadouani, A., Pinel-Alloul, B., Plath, K., Codd, G. A., & Lampert, W. (2004). Effects of Microcystis aeruginosa and purified microcystin‐LR on the feeding behavior of Daphnia pulicaria. Limnology and Oceanography, 49(3), 666-679. DOI: https://doi.org/10.4319/lo.2004.49.3.0666
Gliwicz, Z. M. (1990). Why do cladocerans fail to control algal blooms? In: Biomanipulation Tool for Water Management (pp. 83-97). Dordrecht, The Netherlands: Springer. DOI: https://doi.org/10.1007/978-94-017-0924-8_8
Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057-1063. DOI: https://doi.org/10.1111/j.1529-8817.2012.01222.x
Gutiérrez, R. M. P., Flores, A. M., Solís, R. V., & Jimenez, J. C. (2008). Two new antibacterial norabietane diterpenoids from cyanobacteria, Microcoleous lacustris. Journal of Natural Medicines, 62(3), 328-331. DOI: https://doi.org/10.1007/s11418-008-0238-z
Harada, K. I., & Tsuji, K. (1998). Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment. Journal of Toxicology: Toxin Reviews, 17(3), 385-403. DOI: https://doi.org/10.3109/15569549809040400
Hartmann, L. S., & Barnum, S. R. (2010). Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK. Journal of Molecular Evolution, 71(1), 70-85.
Havens, K., East, T., & Beaver, J. (1996). Experimental studies of zooplankton–phytoplankton–nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology, 36(3), 579-597. DOI: https://doi.org/10.1046/j.1365-2427.1996.00122.x
Hoeger, S. J., Dietrich, D. R., & Hitzfeld, B. C. (2002). Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment. Environmental Health Perspectives, 110(11), 1127-1132. DOI: https://doi.org/10.1289/ehp.021101127
Hoiczyk, E., & Hansel, A. (2000). Cyanobacterial cell walls: news from an unusual prokaryotic envelope. Journal of Bacteriology, 182(5), 1191-1199. DOI: DOI: 10.1128/JB.182.5.1191-1199.2000
Huang, L., Xi, Y., Xu, X., & Wen, X. (2012). Responses in population growth and reproduction of the freshwater rotifer Brachionus calyciflorus to microcystin-LR at different temperatures. In: Annales de Limnologie-International Journal of Limnology, 48(4), 383-390. EDP Sciences. DOI: https://doi.org/10.1051/limn/2012029
Hughes, E. O., Gorham, P. R., & Zehnder, A. (1958). Toxicity of a unialgal culture of Microcystis aeruginosa. Canadian Journal of Microbiology, 4(3), 225-236. Recuperado de: https://doi.org/10.1139/m58-024
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483. DOI: https://doi.org/10.1038/s41579-018-0040-1
Humbert, J. F. (2017). Molecular tools for the detection of toxigenic Cyanobacteria in natural ecosystems. In: Meriluoto, J., Spoof, L., Codd, G. A. (eds.). Handbook of cyanobacterial monitoring and cyanotoxin analysis (pp. 280-283). Recuperado de DOI:10.1002/9781119068761.ch28
Humbert, J. F., & Fastner, J. (2017). Ecology of cyanobacteria. In: Handbook on cyanobacterial monitoring and cyanotoxin analysis (pp. 11-18). Hoboken, USA: John Wiley & Sons, Ltd. DOI: 10.1002/9781119068761
Hyenstrand, P., Blomqvist, P., & Pettersson, A. (1998). Factors determining cyanobacterial success in aquatic systems: A literature review. Archiv für Hydrobiologie Spec. Iss. Advances in Limnology, 51, 41-62. DOI: http://oceanrep.geomar.de/id/eprint/40367
Ibelings, B. W., & Chorus, I. (2007). Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environmental Pollution, 150(1), 177-192. DOI: https://doi.org/10.1016/j.envpol.2007.04.012
Ibelings, B. W., Bormans, M., Fastner, J., & Visser, P. M. (2016). CYANOCOST special issue on cyanobacterial blooms: Synopsis—A critical review of the management options for their prevention, control and mitigation. Aquatic Ecology, 50(3), 595-605. DOI: https://doi.org/10.1007/s10452-016-9596-x
Ibelings, B. W., Bruning, K., De-Jonge, J., Wolfstein, K., Pires, L. D., Postma, J., & Burger, T. (2005). Distribution of microcystins in a lake foodweb: No evidence for biomagnification. Microbial Ecology, 49(4), 487-500. DOI: https://doi.org/10.1007/s00248-004-0014-x
Ibrahem, M. D., Khairy, H. M., & Ibrahim, M. A. (2012). Laboratory exposure of Oreochromis niloticus to crude microcystins (containing microcystin-LR) extracted from Egyptian locally isolated strain (Microcystis aeruginosa Kützing): Biological and biochemical studies. Fish Physiology and Biochemistry, 38(3), 899-908. DOI: https://doi.org/10.1007/s10695-011-9577-x
Janssen, E. M. L. (2019). Cyanobacterial peptides beyond microcystins–A review on co-occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488-499. DOI: https://doi.org/10.1016/j.watres.2018.12.048
Jeppesen, E., Søndergaard, M., Lauridsen, T. L., Davidson, T. A., Liu, Z., Mazzeo, N., & Starling, F. (2012). Biomanipulation as a restoration tool to combat eutrophication: Recent advances and future challenges. In: Advances in Ecological Research, 47, 411-488. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-398315-2.00006-5
Ji, X., Verspagen, J. M., Stomp, M., & Huisman, J. (2017). Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? Journal of Experimental Botany, 68(14), 3815-3828. DOI: https://doi.org/10.1093/jxb/erx027
Jochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E., & Azevedo, S. M. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 338(13), 873-878. DOI: 10.1056/NEJM199803263381304
Joehnk, K. D., Huisman, J. E. F., Sharples, J., Sommeijer, B. E. N., Visser, P. M., & Stroom, J. M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, 14(3), 495-512. DOI: https://doi.org/10.1111/j.1365-2486.2007.01510.x
Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., & Janssen, E. M. L. (2021). CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Research, 196, 117017. DOI: https://doi.org/10.1016/j.watres.2021.117017
Kehr, J. C., & Dittmann, E. (2015). Biosynthesis and function of extracellular glycans in cyanobacteria. Life, 5(1), 164-180. DOI: https://doi.org/10.3390/life5010164
Kinnear, S. H., Duivenvoorden, L. J., & Fabbro, L. D. (2007). Growth and Bioconcentration in Spirodela oligorrhiza Following Exposure to Cylindrospermopsis raciborskii Whole Cell Extracts. Australasian Journal of Ecotoxicology, 13(1), 19.
Kobos, J., Błaszczyk, A., Hohlfeld, N., Toruńska-Sitarz, A., Krakowiak, A., Hebel, A., & Messyasz, B. (2013). Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanological and Hydrobiological Studies, 42(4), 358-378. DOI: https://doi.org/10.2478/s13545-013-0093-8
Kokociński, M., Akçaalan, R., Salmaso, N., Stoyneva-Gärtner, M. P., & Sukenik, A. (2017). Expansion of alien and invasive cyanobacteria. In: Handbook on Cyanobacterial Monitoring and Cyanotoxin Analysis (pp. 28-39). DOI: 10.1002/9781119068761
Komárek, J. (1995). Current trends and species delimitation in the cyanoprokaryote taxonomy. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 11-29. DOI: 10.1127/algol_stud/75/1995/11
Komárek, J. (2006). Cyanobacterial taxonomy: Current problems and prospects for the integration of traditional and molecular approaches. Algae, 21(4), 349-375. DOI: https://doi.org/10.4490/algae.2006.21.4.349
Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia, 639(1), 245-259. DOI: https://doi.org/10.1007/s10750-009-0031-3
Komárek, J. (2014). Modern classification of cyanobacteria. In: Sharma, N. K., Rai, A. K., & Stal, L. J. (eds.). Cyanobacteria: An economic perspective (pp. 21-39). Chichester, UK: John Wiley & Sons, Ltd. DOI: 10.1002/9781118402238
Kurmayer, R., Sivonen, K., Wilmotte, A., & Salmaso, N. (eds.). (2017). Molecular tools for the detection and quantification of toxigenic cyanobacteria. Chichester, UK: John Wiley & Sons, Ltd.
Lacerot, G., Kruk, C., Lürling, M., & Scheffer, M. (2013). The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology, 58(3), 494-503. DOI: https://doi.org/10.1111/fwb.12075
Lampert, W., & Sommer, U. (2007). Limnoecology: The ecology of lakes and streams. Oxford, UK: Oxford University Press. DOI: https://doi.org/10.1093/plankt/fbn013
Liang, H., Zhou, W., Zhang, Y., Qiao, Q., & Zhang, X. (2015). Are fish fed with cyanobacteria safe, nutritious and delicious? A laboratory study. Scientific Reports, 5, 15166. DOI: https://doi.org/10.1038/srep15166
Liato, V., & Aïder, M. (2017). Geosmin as a source of the earthy-musty smell in fruits, vegetables and water: Origins, impact on foods and water, and review of the removing techniques. Chemosphere, 181, 9-18. DOI: https://doi.org/10.1016/j.chemosphere.2017.04.039
Liu, L., Pohnert, G., & Wei, D. (2016). Extracellular metabolites from industrial microalgae and their biotechnological potential. Marine Drugs, 14(10), 191. DOI: https://doi.org/10.3390/md14100191
Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y., & Liu, Y. (2011). Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China. Journal of Environmental Sciences, 23(4), 575-581. DOI: https://doi.org/10.1016/S1001-0742(10)60450-0
Lürling, M., & Van Oosterhout, F. (2013). Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Research, 47(17), 6527-6537. DOI: https://doi.org/10.1016/j.watres.2013.08.019
Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S., & Huszar, V. L. (2013). Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology, 58(3), 552-559. DOI: https://doi.org/10.1111/j.1365-2427.2012.02866.x
Lürling, M., Waajen, G., Engels, B., & Van Oosterhout, F. (2017). Effects of dredging and lanthanum-modified clay on water quality variables in an enclosure study in a hypertrophic pond. Water, 9(6), 380. DOI: https://doi.org/10.3390/w9060380
Lynch, M., & Shapiro, J. (1981). Predation, enrichment, and phytoplankton community structure. Limnology and Oceanography, 26(1), 86-102. DOI: https://www.jstor.org/stable/2835809
MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., & Codd, G. A. (1990). Cyanobacterial microcystin‐LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters, 264(2), 187-192. DOI: https://doi.org/10.1016/0014-5793(90)80245-E
Maddison, D. R., Schulz, K. S., & Maddison, W. P. (2007). The tree of life web project. Zootaxa, 1668(1), 19-40.
Maršálek, B., & Bláha, L. (2004). Comparison of 17 biotests for detection of cyanobacterial toxicity. Environmental Toxicology: An International Journal, 19(4), 310-317. DOI: https://doi.org/10.1002/tox.20020
Mateo, P., Leganés, F., Perona, E., Loza, V., & Fernández-Piñas, F. (2015). Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodiversity and Conservation, 24(4), 909-948. DOI: https://doi.org/10.1007/s10531-015-0903-y
Mazouni, K., Domain, F., Cassier‐Chauvat, C., & Chauvat, F. (2004). Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Molecular Microbiology, 52(4), 1145-1158. DOI: https://doi.org/10.1111/j.1365-2958.2004.04042.x
McLellan, N. L., & Manderville, R. A. (2017). Toxic mechanisms of microcystins in mammals. Toxicology Research, 6(4), 391-405. DOI: https://doi.org/10.1039/c7tx00043j
Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59, 303-327. DOI: https://doi.org/10.1016/j.envint.2013.06.013
Meriluoto, J., Metcalf, J. S., & Codd, G. A. (2017). Selection of analytical methodology for cyanotoxin analysis. In: Meriluoto, J., Spoof, L., & Codd, G. A. (eds.). Handbook of cyanobacterial monitoring and cyanotoxin analysis (pp. 309-312). Hoboken, USA: John Wiley & Sons, Ltd.
Mihaljević, M., & Stević, F. (2011). Cyanobacterial blooms in a temperate river-floodplain ecosystem: The importance of hydrological extremes. Aquatic Ecology, 45(3), 335-349. DOI: https://doi.org/10.1007/s10452-011-9357-9
Miller, S. R., & Castenholz, R. W. (2000). The evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Journal of Phycology, 36, 48-48. DOI: https://doi.org/10.1046/j.1529-8817.1999.00001-143.x
Mitra, A., & Flynn, K. J. (2006). Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2(2), 194-197. DOI: https://doi.org/10.1098/rsbl.2006.0447
Mohamed, Z. A., Carmichael, W. W., & Hussein, A. A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental Toxicology: An International Journal, 18(2), 137-141. DOI: https://doi.org/10.1002/tox.10111
Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9), 476. DOI: https://doi.org/10.3390/md18090476
Morais, J., Augusto, M., Carvalho, A. P., Vale, M., & Vasconcelos, V. M. (2008). Cyanobacteria hepatotoxins, microcystins: Bioavailability in contaminated mussels exposed to different environmental conditions. European Food Research and Technology, 227(3), 949.
Moreira, C., Ramos, V., Azevedo, J., & Vasconcelos, V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Applied Microbiology and Biotechnology, 98(19), 8073-8082. DOI: https://doi.org/10.1007/s00253-014-5951-9
Moss, B. R. (2018). Ecology of freshwaters: Earth's bloodstream. Hoboken, USA: John Wiley & Sons. DOI: https://doi.org/10.1007/s00217-007-0779-5
Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., & Paerl, H. (2011). Allied attack: Climate change and eutrophication. Inland Waters, 1(2), 101-105. DOI: 10.5268/IW-1.2.359
Mur, R., Skulberg, O. M., & Utkilen, H. (1999). Cyanobacteria in the environment. In: Chorus, I., & Bartram, J. (eds.). (1999). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. Boca Raton, USA: CRC Press.
Nabout, J. C., Da-Silva-Rocha, B., Carneiro, F. M., & Sant’Anna, C. L. (2013). How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodiversity and Conservation, 22(12), 2907-2918. DOI: https://doi.org/10.1007/s10531-013-0561-x
Nandini, S, Sarma, S. S. S., & Ramírez-García, P. (2000). Life table demography and population growth of Daphnia laevis (Cladocera, Anomopoda) under different densities of Chlorella vulgaris and Microcystis aeruginosa. Crustaceana 73(10), 1273-1286. DOI: https://doi.org/10.1163/156854000505254
Nandini, S., Sánchez-Zamora, C., & Sarma, S. S. S. (2019) Toxicity of cyanobacterial blooms from the reservoir Valle de Bravo (Mexico): A case study on the rotifer Brachionus calyciflorus. Science of the Total Environment, 688, 1348-1358. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.297
Nandini, S., Zamora‐Barrios, C. A., & Sarma, S. S. S. (2020). A long‐term study on the effect of cyanobacterial crude extracts from lake Chapultepec (Mexico City) on Selected zooplankton species. Environmental Toxicology and Chemistry, 39(12), 2409-2419. DOI: ttps://doi.org/10.1002/etc.4875
Negri, A. P., Jones, G. J., Blackburn, S. I., Oshima, Y., & Onodera, H. (1997). Effect of culture and bloom development and of sample storage on paralytic shellfish poisons in the cyanobacterium Anabaena circinalis. Journal of Phycology, 33(1), 26-35. DOI: https://doi.org/10.1111/j.0022-3646.1997.00026.x
Nobili, S., Lippi, D., Witort, E., Donnini, M., Bausi, L., Mini, E., & Capaccioli, S. (2009). Natural compounds for cancer treatment and prevention. Pharmacological Research, 59(6), 365-378. DOI: https://doi.org/10.1016/j.phrs.2009.01.017
Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327-3332. DOI: https://doi.org/10.1128/AEM.63.8.3327-3332.1997
O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313-334. DOI: https://doi.org/10.1016/j.hal.2011.10.027
Oberholster, P. J., Botha, A. M., & Cloete, T. E. (2006). Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA. Lakes & Reservoirs: Research & Management, 11(2), 111-123. DOI: https://doi.org/10.1111/j.1440-1770.2006.00297.x
Oliva-Martínez, M. G., Godínez-Ortega, J. L., & Zuñiga-Ramos, C. A. (2014). Biodiversidad del fitoplancton de aguas continentales en México. Revista Mexicana de Biodiversidad, 85, 54-61. DOI: https://doi.org/10.7550/rmb.32706
Olvera-Ramírez, R., Centeno-Ramos, C., & Martínez-Jerónimo, F. (2010). Efectos tóxicos de Pseudanabaena tenuis (Cyanobacteria) en los cladóceros Daphnia magna y Ceriodaphnia dubia. Hidrobiológica, 20(3), 203-212.
Ortega, M. M. (1984). Catálogo de algas continentales recientes de México (No. Sirsi i9789688372715). Ciudad de México, México: Coordinación de la Investigación Científica, Instituto de Biología, Universidad Nacional Autónoma de México.
Paerl, H. W. (2014). Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world. Life, 4(4), 988-1012. DOI: https://doi.org/10.3390/life4040988
Paerl, H. W. (2017). Controlling harmful cyanobacterial blooms in a climatically more extreme world: Management options and research needs. Journal of Plankton Research, 39(5), 763-771. DOI: https://doi.org/10.1093/plankt/fbx042
Paerl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1(1), 27-37. DOI: https://doi.org/10.1111/j.1758-2229.2008.00004.x
Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 65(4), 995-1010. DOI: https://doi.org/10.1007/s00248-012-0159-y
Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349-1363. DOI: https://doi.org/10.1016/j.watres.2011.08.002
Paerl, H. W., Havens, K. E., Hall, N. S., Otten, T. G., Zhu, M., Xu, H., & Qin, B. (2020). Mitigating a global expansion of toxic cyanobacterial blooms: Confounding effects and challenges posed by climate change. Marine and Freshwater Research, 71(5), 579-592. DOI: https://doi.org/10.1071/MF18392
Paerl, H. W., Otten, T. G., & Joyner, A. R. (2016). Moving towards adaptive management of cyanotoxin‐impaired water bodies. Microbial Biotechnology, 9(5), 641-651.
Pawlik-Skowrońska, B., Toporowska, M., & Mazur-Marzec, H. (2019). Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environmental Science and Pollution Research, 26(12), 11793-11804. DOI: https://doi.org/10.1007/s11356-019-04543-1
Pérez-Morales, A., Sarma, S. S. S., & Nandini, S. (2015). Producción de microcistinas en Microcystis inducida por Daphnia pulex (Cladocera) y Brachionus calyciflorus (Rotifera). Hidrobiológica, 25(3), 411-415.
Pilotto, L. S., Douglas, R. M., Burch, M. D., Cameron, S., Beers, M., Rouch, G. J., & Moore, C. (1997). Health effects of exposure to cyanobacteria (blue–green algae) during recreational water–related activities. Australian and New Zealand Journal of Public Health, 21(6), 562-566. DOI: ttps://doi.org/10.1111/j.1467-842X.1997.tb01755.x
Pineda-Mendoza, R. M., Olvera-Ramírez, R., & Martínez-Jerónimo, F. (2012). Microcystins produced by filamentous cyanobacteria in urban lakes. A case study in Mexico City. Hidrobiológica, 22(3), 290-298.
Pineda-Mendoza, R. M., Zúñiga, G., & Martínez-Jerónimo, F. (2014). Infochemicals released by Daphnia magna fed on Microcystis aeruginosa affect mcyA gene expression. Toxicon, 80, 78-86. DOI: https://doi.org/10.1016/j.toxicon.2014.01.008
Pineda-Mendoza, R. M., Zúñiga, G., & Martínez-Jerónimo, F. (2016). Microcystin production in Microcystis aeruginosa: Effect of type of strain, environmental factors, nutrient concentrations, and N: P ratio on mcyA gene expression. Aquatic Ecology, 50(1), 103-119. DOI: https://doi.org/10.1007/s10452-015-9559-7
Pla-García, J., & Menor-Salván, C. (2017). La composición química de la atmósfera primitiva del planeta Tierra. Anales de Química, 113(1). Recuperado de https://analesdequimica.es/index.php/AnalesQuimica/article/view/940
Popovic, M., Zaja, R., & Smital, T. (2010). Organic anion transporting polypeptides (OATP) in zebrafish (Danio rerio): Phylogenetic analysis and tissue distribution. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155(3), 327-335. DOI: https://doi.org/10.1016/j.cbpa.2009.11.011
Porter, K. G. (1973). Selective grazing and differential digestion of algae by zooplankton. Nature, 244(5412), 179-180. DOI: https://doi.org/10.1038/244179a0
Ptacnik, R., Andersen, T., & Tamminen, T. (2010). Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems, 13(8), 1201-1214. DOI: https://doi.org/10.1007/s10021-010-9380-z
Rabouille, S., Salençon, M. J., & Thébault, J. M. (2005). Functional analysis of Microcystis vertical migration: A dynamic model as a prospecting tool: I—Processes analysis. Ecological Modelling, 188(2-4), 386-403. DOI: https://doi.org/10.1016/j.ecolmodel.2005.02.015
Rantala, A., Fewer, D. P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T., & Sivonen, K. (2004). Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences, 101(2), 568-573. DOI: https://doi.org/10.1073/pnas.0304489101
Rapala, J., Sivonen, K., Lyra, C., & Niemelä, S. I. (1997). Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Applied and Environmental Microbiology, 63(6), 2206-2212.
Rastogi, R. P., Madamwar, D., & Incharoensakdi, A. (2015). Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Frontiers in Microbiology, 6, 1254. DOI: https://doi.org/10.3389/fmicb.2015.01254
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 230A-221.
Reichwaldt, E. S., & Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research, 46(5), 1372-1393. DOI: https://doi.org/10.1016/j.watres.2011.11.052
Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge, UK: Cambridge University Press.
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61. DOI: https://doi.org/10.1099/00221287-111-1-1
Rondel, C., Arfi, R., Corbin, D., Le Bihan, F., Ndour, E. H., & Lazzaro, X. (2008). A cyanobacterial bloom prevents fish trophic cascades. Freshwater Biology, 53(4), 637-651. DOI: https://doi.org/10.1111/j.1365-2427.2007.01894.x
Saker, M. L., Welker, M., & Vasconcelos, V. M. (2007). Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Applied Microbiology and Biotechnology, 73(5), 1136-1142. DOI: https://doi.org/10.1007/s00253-006-0565-5
Salmaso, N., Bernard, C., Humbert, J. F., Akçaalan, R., Albay, M., Ballot, A., & Yéprémian, C. (2016). Basic guide to detection and monitoring of potentially toxic cyanobacteria. In: Handbook of cyanobacterial monitoring and cyanotoxin analysis (pp. 46-69). Hoboken, USA: John Wiley & Sons, Ltd.
Sandoval-Reyes, J. L., & Ramírez-Zamora, R. M. (2019). Simultaneous removal of dissolved organic matter, Microcystis aeruginosa, and microcystin-LR by pre-oxidation and coagulation-flocculation processes. Revista Mexicana de Ingeniería Química, 18(3), 889-900. DOI: https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Sandoval
Savadova, K., Mazur-Marzec, H., Karosienė, J., Kasperovičienė, J., Vitonytė, I., Toruńska-Sitarz, A., & Koreivienė, J. (2018). Effect of increased temperature on native and alien nuisance cyanobacteria from temperate lakes: An experimental approach. Toxins, 10(11), 445. DOI: https://doi.org/10.3390/toxins10110445
Schirrmeister, B. E., de Vos, J. M., Antonelli, A., & Bagheri, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences, 110(5), 1791-1796. DOI: https://doi.org/10.1073/pnas.1209927110
Schmidt, J. R., Wilhelm, S. W., & Boyer, G. L. (2014). The fate of microcystins in the environment and challenges for monitoring. Toxins, 6(12), 3354-3387. DOI: ttps://doi.org/10.3390/toxins6123354
Schopf, J. W. (2012). The fossil record of cyanobacteria. In: Ecology of cyanobacteria II (pp. 15-36). Dordrecht, The Netherlands: Springer. DOI: https://doi.org/10.1007/978-94-007-3855-3_2
Silveira, S. B., & Odebrecht, C. (2019). Effects of salinity and temperature on the growth, toxin production, and akinete germination of the cyanobacterium Nodularia spumigena. Frontiers in Marine Science, 6, 339. DOI: https://doi.org/10.3389/fmars.2019.00339
Sinha, R., Pearson, L. A., Davis, T. W., Burford, M. A., Orr, P. T., & Neilan, B. A. (2012). Increased incidence of Cylindrospermopsis raciborskii in temperate zones–is climate change responsible? Water Research, 46(5), 1408-1419. DOI: https://doi.org/10.1016/j.watres.2011.12.019
Steinberg, C. E. W., Schäfer, H., & Beisker, W. (1998). Do acid‐tolerant cyanobacteria exist? Acta Hydrochimica et Hydrobiologica, 26(1), 13-19. DOI: https://doi.org/10.1002/(SICI)1521-401X(199801)26:1<13::AID-AHEH13>3.0.CO;2-V
Steiner, K., Wood, S. A., Puddick, J., Hawes, I., Dietrich, D. R., & Hamilton, D. P. (2017). A comparison of bacterial community structure, activity and microcystins associated with formation and breakdown of a cyanobacterial scum. Aquatic Microbial Ecology, 80(3), 243-256. DOI: https://doi.org/10.3354/ame01852
Stewart, I., Schluter, P. J., & Shaw, G. R. (2006). Cyanobacterial lipopolysaccharides and human health–a review. Environmental Health, 5(1), 1-23. DOI: https://doi.org/10.1186/1476-069X-5-7
Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomedicine & Pharmacotherapy, 90, 760-776. DOI: https://doi.org/10.1016/j.biopha.2017.04.030
Swingle, M., Ni, L., & Honkanen, R. E. (2007). Small-molecule inhibitors of Ser/Thr protein phosphatases. In: Protein phosphatase protocols (pp. 23-38). Totowa, USA: Springer. DOI: https://doi.org/10.1385/1-59745-267-X:23
Teneva, I., Dzhambazov, B., Mladenov, R., & Schirmer, K. (2005). molecular and phylogenetic characterization of phormidium species (cyanoprokaryota) using the CPCB‐IGS‐CPCA locus 1. Journal of Phycology, 41(1), 188-194. DOI: https://doi.org/10.1111/j.1529-8817.2005.04054.x
Tian, D., Zheng, W., Wei, X., Sun, X., Liu, L., Chen, X., & Wang, X. (2013). Dissolved microcystins in surface and ground waters in regions with high cancer incidence in the Huai River Basin of China. Chemosphere, 91(7), 1064-1071. DOI: https://doi.org/10.1016/j.chemosphere.2013.01.051
Tillett, D., Dittmann, E., Erhard, M., Von Döhren, H., Börner, T., & Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide–polyketide synthetase system. Chemistry & Biology, 7(10), 753-764. DOI: https://doi.org/10.1016/S1074-5521(00)00021-1
Triest, L., Stiers, I., & Van Onsem, S. (2016). Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquatic Ecology, 50(3), 461-483. DOI: https://doi.org/10.1007/s10452-015-9548-x
Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Yoshida, F., Suttajit, M., & Vasconcelos, V. (1996). Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Natural Toxins, 4(6), 271-276. DOI:https://doi.org/10.1002/(SICI)(1996)4:6<271::AIDNT4>3.0.CO;2-A
Urrutia-Cordero, P., Ekvall, M. K., & Hansson, L. A. (2016). Local food web management increases resilience and buffers against global change effects on freshwaters. Scientific Reports, 6, 29542. DOI: https://doi.org/10.1038/srep29542
USEPA, U.S. Environmental Protection Agency. (2015). Health effects support document for the cyanobacterial toxin microcystins. Washington, DC, USA: U.S. Environmental Protection Agency.
Vasconcelos, V. (2001). Cyanobacteria toxins: Diversity and ecological effects. Limnetica, 20(1), 45-58.
Vasconcelos, V., Martins, A., Vale, M., Antunes, A., Azevedo, J., Welker, M., & Montejano, G. (2010). First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico. Toxicon, 56(3), 425-431. DOI: https://doi.org/10.1016/j.toxicon.2010.04.011
Vermaas, W. F. (2001). Photosynthesis and respiration in cyanobacteria. eLS. DOI: https://doi.org/10.1038/npg.els.0001670
Visser, P. M., Ibelings, B. W., Bormans, M., & Huisman, J. (2016a). Artificial mixing to control cyanobacterial blooms: A review. Aquatic Ecology, 50(3), 423-441. DOI: https://doi.org/10.1007/s10452-015-9537-0
Visser, P. M., Verspagen, J. M., Sandrini, G., Stal, L. J., Matthijs, H. C., Davis, T. W., & Huisman, J. (2016b). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 54, 145-159. DOI: https://doi.org/10.1016/j.hal.2015.12.006
Vogiazi, V., De-la-Cruz, A., Mishra, S., Shanov, V., Heineman, W. R., & Dionysiou, D. D. (2019). A comprehensive review: Development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sensors, 4(5), 1151-1173. DOI: https://doi.org/10.1021/acssensors.9b00376
Waajen, G, W., Lürling, M., & Van de Sande, R. (2019). The unfulfilled promise of urban Lake Kleine Melanen (The Netherlands): Diagnostics, experiment on reduction of sediment P-release and in-lake restoration. Lake and Reservoir Management, 35(1), 8-24. DOI: https://doi.org/10.1080/10402381.2018.1505791
Wallace, B. B., Bailey, M. C., & Hamilton, D. P. (2000). Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquatic Sciences, 62(4), 320-333. DOI: https://doi.org/10.1007/PL00001338
Walsby, A. E. (1994). Gas vesicles. Microbiology and Molecular Biology Reviews, 58(1), 94-144.
Walsby, A. E., Hayes, P. K., Boje, R., & Stal, L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist, 136(3), 407-417. DOI: https://doi.org/10.1046/j.1469-8137.1997.00754.x
Wang, L., Sun, J., Zheng, W., Huang, T., Zhang, Y., Wu, Z., & He, F. (2018). Effects of a combined biological restoration technology on nitrogen and phosphorus removal from eutrophic water. Polish Journal of Environmental Studies, 27(5). DOI: https://doi.org/10.15244/pjoes/77609
Wannemacher, R. W. (1989). Chemical stability and laboratory safety of naturally occurring toxins. Fort Detrick, USA: US Army Medical Research Institute of Infectious Disease.
Watanabe, M. F., & Oishi, S. (1985). Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 49(5), 1342-1344. DOI: https://doi.org/10.1128/aem.49.5.1342-1344.1985
Watanabe, M. F., Tsuji, K., Watanabe, Y., Harada, K. I., & Suzuki, M. (1992). Release of heptapeptide toxin (microcystin) during the decomposition process of Microcystis aeruginosa. Natural Toxins, 1(1), 48-53. DOI: https://doi.org/10.1002/nt.2620010110
Whitton, B. A. (2002). Phylum cyanophyta (cyanobacteria). In: The freshwater algal flora of the British isles (pp. 25-122). Cambridge, UK: Cambridge University Press.
Whitton, B. A., & Potts, M. (2012). Introduction to the cyanobacteria. In: Ecology of cyanobacteria II (pp. 1-13). Dordrecht, The Netherlands: Springer. DOI: https://doi.org/10.1007/978-94-007-3855-3_1
WHO, World Health Organization. (2003). Guidelines for safe recreational water environments: Coastal and fresh waters (vol. 1). Geneva, Switzerland: World Health Organization.
Wörmer, L., Cirés, S., & Quesada, A. (2011). Importance of natural sedimentation in the fate of microcystins. Chemosphere, 82(8), 1141-1146. DOI: https://doi.org/10.1016/j.chemosphere.2010.11.024
Yadav, S., Sinha, R. P., Tyagi, M. B., & Kumar, A. (2011). Cyanobacterial secondary metabolites. International Journal of Pharmacy and Biological Sciences, 2(1), 144-167.
Zamora-Barrios, C. A., Nandini, S., & Sarma, S. S. S. (2015). Effect of crude extracts of Dolichospermum planctonicum on the demography of Plationus patulus (Rotifera) and Ceriodaphnia cornuta (Cladocera). Ecotoxicology, 24(1), 85-93. DOI: https://doi.org/10.1007/s10646-014-1358-8
Zamora-Barrios, C. A., Nandini, S., & Sarma, S. S. S. (2017). Effect of crude extracts from cyanobacterial blooms in Lake Texcoco (Mexico) on the population growth of Brachionus calyciflorus (Rotifera). Toxicon, 139, 45-53. DOI: https://doi.org/10.1016/j.toxicon.2017.09.013
Zamora-Barrios, C. A., Nandini, S., & Sarma, S. S. S. (2019). Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. Environmental Pollution, 249, 267-276. DOI: https://doi.org/10.1016/j.envpol.2019.03.029
Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 1896-1917. DOI: https://doi.org/10.3390/toxins5101896
Zhang, D., Xie, P., & Chen, J. (2010). Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bulletin of Environmental Contamination and Toxicology, 84(2), 202-207. DOI: https://doi.org/10.1007/s00128-009-9910-6
Zhao, H., Zhu, W., Chen, H., Zhou, X., Wang, R., & Li, M. (2016). Numerical simulation of the vertical migration of Microcystis (cyanobacteria) colonies based on turbulence drag. Journal of Limnology, 76(1). DOI: https://doi.org/10.4081/jlimnol.2016.1501
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.