Predicciones extremas de lluvia en 24 horas en el estado de Zacatecas, México

• Daniel Francisco Campos-Aranda* • Profesor jubilado de la Universidad Autónoma de San Luis Potosí, México
*Autor de correspondencia

Resumen

Campos-Aranda, D.F. (septiembre-octubre, 2014). Predicciones extremas de lluvia en 24 horas en el estado de Zacatecas, México. *Tecnología y Ciencias del Agua*, 5(5), 199-225

Cuando se dimensionan hidrológicamente obras hidráulicas grandes o pequeñas pero peligrosas por su ubicación cercana a centros de población o de importantes áreas económicas, es común utilizar crecientes de diseño asociadas a altos periodos de retorno como 1 000 o 10 000 años; incluso en algunas ocasiones se decide eliminar el riesgo de ser excedidas utilizando la creciente máxima probable. Por lo general, la obtención de estas crecientes de diseño no puede ser abordada con el método probabilístico, pues no existen datos de gasto máximo anual, entonces su estimación se realiza con métodos hidrológicos que transforman tormentas de diseño en hidrogramas de respuesta. Desafortunadamente, los registros pluviográficos son también bastante escasos y por ello, se procesan los registros de precipitación máxima diaria anual (PMD), que son mucho más comunes y amplios. En este estudio se procesaron los 98 registros de PMD con más de 25 datos, disponibles en el estado de Zacatecas. Se encontró que 17 son no homogéneos y por ello se eliminaron. Para el resto, 81 series anuales de máximos, se obtuvieron sus predicciones de periodos de retorno elevados variando de 100 a 10000 años. Se contrastaron las predicciones obtenidas con intervalos de recurrencia de 100, 1 000 y 10 000 años, con las disponibles como curvas isomáximas publicadas en 1976, por la extinta Secretaría de Recursos Hidráulicos y se encontró que tales mapas todavía son vigentes para el estado de Zacatecas. También se aplicó el método estadístico de David M. Hershfield para estimar la precipitación máxima probable (PMP) puntual en 24 horas. Esta PMP varió de 196.5 a 507.0 milímetros. Respecto a los cocientes entre la PMP y el valor máximo observado de PMD y entre la PMP y la predicción de 10 000 años, sus magnitudes medias de orden práctico son 4.20 y 2.20, respectivamente. Los análisis regionales de frecuencia realizados en dos zonas geográficas del estado de Zacatecas, permitieron demostrar su utilidad y precisión para estimar predicciones en sitios o localidades sin datos, pero ubicados dentro de tal región.

Palabras clave: precipitación máxima diaria anual, precipitación máxima probable, distribución Log-Pearson tipo III, distribución GVE, error estándar de ajuste, análisis regional de frecuencia.

Abstract

Campos-Aranda, D.F. (September-October, 2014). Extreme 24-Hour Rainfall Predictions in the State of Zacatecas, Mexico. Water Technology and Sciences (in Spanish), 5(5), 199-225.

When determining the hydrological dimensions of both large and small hydraulic works that are dangerous because of their proximity to populations or important economic areas, the use of design floods associated with high return periods is common, such as 1 000 or 10 000 years. At times, the risk to be exceeded is even eliminated by using the maximum probable flood. Generally, probabilistic methods cannot be used to obtain these design floods since annual maximum flow data do not exist. Therefore, it is estimated using hydrological methods that convert design storms into response hydrographs. Unfortunately, pluviograph data are also scarce and, therefore, annual maximum daily rainfall (MDR) records are processed, which are much more common and widespread. This study processed 98 MDR records with over 25 data available for the state of Zacatecas. Seventeen were not homogeneous and were therefore eliminated. For the remaining 81, annual maximum series predictions were obtained for high return periods varying from 100 to 10 000 years. Predictions obtained with recurrence intervals of 100, 1 000 and 10 000 years were compared with those available from maximum isocurves published in 1976 by the former Secretary of Hydraulic Resources and found that such maps are still valid for the state of Zacatecas. The David M. Hershfield statistical method was also applied for estimating probable maximum precipitation (PMP) punctually with duration of 24 hours. This PMP ranged from 196.5 to 507.0 millimeters. Regarding the ratios between the PMP and the maximum observed value of DMP, and between PMP and the prediction of 10 000 years, their practical average magnitudes are 4.20 and 2.20, respectively. The regional frequency analyses performed in two geographic regions in the state of Zacatecas made it possible to demonstrate their usefulness and accuracy in estimating predictions for sites or localities in that region that do not contain data.

Keywords: Annual daily maximum precipitation, probable maximum precipitation, Log-Pearson Type III distribution, GEV distribution, standard error of fit, regional flood frequency analysis.

Recibido: 16/10/13 Aceptado: 16/06/14

Introducción

El análisis de frecuencia de crecientes permite estimar los gastos máximos de diseño, que son eventos extremos asociados con una cierta probabilidad de excedencia, cuyo recíproco es el llamado periodo de retorno o intervalo promedio en años entre la ocurrencia de un evento igual o mayor. Su procedimiento consiste en ajustar una función de distribución de probabilidades o modelo probabilístico a la muestra disponible de gastos máximos anuales instantáneos y entonces utilizarla para obtener la predicciones buscadas.

Cuando tales predicciones o *crecientes* de diseño dimensionarán hidrológicamente grandes embalses de aprovechamiento o control, diques de protección de centrales nucleares, o bien buscarán definir la cota máxima de inundaciones para ubicar arriba de tal nivel, carreteras importantes y plantas de tratamiento o de abastecimiento de agua potable, los periodos de retorno que se utilizan son elevados, variando de 1 000 a 10 000 años, e incluso buscando suprimir el riesgo; por ello se emplea la *creciente máxima probable*, la cual se estima con base en la *precipitación máxima probable* (Smith, 1993; Gupta, 2008; Shaw et al., 2011).

Debido a la escasez de estaciones de aforos en los sitios de interés, la estimación de las crecientes de diseño se realiza a través del llamado *método hidrológico*, el cual transforma una tormenta de diseño en un hidrograma de respuesta de la cuenca. El procedimiento fundamental de este método es la técnica de los hidrogramas unitarios (HU), sean éstos identificados o sintéticos. Entre los segundos se tienen los HU adimensionales y los triangulares, que son su simplificación.

Por otra parte, dada la escasez de pluviógrafos en las cuencas rurales, sean éstas pequeñas o grandes, el enfoque obligado para desarrollar las *tormentas de diseño* consiste en utilizar los registros pluviométricos, que son más abundantes y amplios. Los registros de precipitación máxima diaria anual (*PMD*)

son procesados como variables aleatorias, ajustándoles un modelo probabilístico para obtener las predicciones buscadas, es decir, se desarrolla con ellos un análisis de frecuencia.

El objetivo de este trabajo consistió en analizar y procesar los 134 registros disponibles de PMD del estado de Zacatecas, México, para estimar las predicciones correspondientes a los periodos de retorno de 100, 500, 1 000, 5 000 y 10 000 años, con base en dos modelos probabilísticos que se aplican bajo precepto. También se estimó la precipitación máxima probable (PMP) puntual en 24 horas de duración, por medio del método estadístico de David M. Hershfield. Existiendo mapas del país de curvas isomáximas de 100, 1 000 y 10 000 años de periodo de recurrencia, publicadas en 1976 por la extinta Secretaría de Recursos Hidráulicos (SRH), se contrastaron sus valores con las predicciones obtenidas. Se encontró que tales mapas todavía son válidos. Respecto a las relaciones entre la *PMP* y el valor más grande observado de PMD y aquélla de periodo de retorno 10 000 años, se definieron los siguientes valores promedio de carácter práctico: 4.20 y 2.20, respectivamente. Se exponen también los resultados de dos análisis regionales de frecuencia, uno para la zona geográfica de Juchipila y otro para la Región Hidrológica Núm. 37 (El Salado) del estado de Zacatecas, México.

Datos, métodos y resultados

Registros pluviométricos procesados

El estado de Zacatecas dispone actualmente de 134 estaciones pluviométricas con registro de precipitación máxima diaria anual (*PMD*), según información proporcionada por la Dirección Local de la Comisión Nacional del Agua (Conagua). Tomando en cuenta que tales registros serán procesados probabilísticamente para obtener predicciones en altos periodos de retorno, se decidió utilizar sólo aquellas series con más de 25 datos. En el cuadro 1 se muestran las características generales de los

98 registros con más de 25 años, así como sus propiedades estadísticas insesgadas, definidas con la media aritmética y los coeficientes de variación, asimetría, curtosis y de correlación serial de orden 1. El registro más largo es de 68 años y corresponde a la estación San Pedro Piedra Gorda, pero se tienen además 20 series con 50 o más años. Previo a procesamiento probabilístico y estadístico de cada registro de *PMD* se revisó cada uno para detectar todos los valores superiores a 100 milímetros y solicitar a la Conagua de Zacatecas su verificación o rechazo, así como el dato correcto.

Pruebas de calidad estadística

Para que los resultados de un procesamiento probabilístico de una serie de *PMD* conduzca a predicciones confiables, tales datos deben proceder de un proceso aleatorio estacionario, es decir que no haya cambiado con el tiempo. Lo anterior implica que la serie de *PMD* debe estar integrada por valores independientes y estar libres de componentes determinísticas que la vuelvan no homogénea. Al tomar sólo los valores anuales de precipitación máxima diaria se tiene la seguridad de que ellos serán independientes, pero pueden mostrar persistencia, tendencia, cambios en la media o bien variabilidad excesiva o escasa.

Para probar la calidad estadística de cada registro se aplicaron las siguientes siete pruebas: (1) test de Von Neumann es una prueba de no aleatoriedad contra componentes determinísticas no especificadas (WMO, 1971; Buishand, 1982); (2) la prueba de Anderson detecta persistencia a través del coeficiente de correlación serial de orden 1 (Linsley et al., 1988); (3) la prueba de Sneyers también de persistencia es más recomendada en registros que no son normales (WMO, 1971); (4) el test de Kendall detecta tendencia, sobre todo si ésta es lineal (Kottegoda, 1980); (5) el test de Spearman también de tendencia es más general (WMO, 1971); (6) la prueba de Cramer permite comparar medias por subperiodos (WMO, 1971), y por último, (7) la prueba de Bartlett,

que busca inconsistencia de la dispersión (WMO, 1971; Ruiz-Maya, 1977).

Resultados de las pruebas estadísticas

En el cuadro 2 se enlistan las 17 estaciones pluviométricas que fueron detectadas como no homogéneas debido a que muestran las componentes determinísticas que se indican. Cuando la persistencia o la tendencia sólo fue detectada con una de las dos pruebas específicas aplicadas, se designó como *ligera*. Donde el test de Von Neumann mostró pérdida de aleatoriedad se indicó al registro como no aleatorio.

Además, 12 registros mostraron sólo persistencia ligera, detectada con la prueba de Sneyers, tales registros fueron procesados y son los siguientes: Ameca La Vieja, Boca del Tesorero, Camacho, Cedros, García de la Cadena, Genaro Codina, Guadalupe, Juan Aldama, Nochistlán, Palmillas, San Pedro Piedra Gorda y Villa de Cos. Por lo anterior, fueron 81 los registros procesados, cuya ubicación se muestra en la figura 1. En las figuras 2, 3 y 4 se muestran tres registros no homogéneos, que no tienen años faltantes. La tendencia lineal mostrada en tales figuras fue calculada y probada según criterio de Ostle y Mensing (1975).

Predicciones de altos periodos de retorno

La definición clásica de *probabilidad* indica que es el cociente del número de casos favorables al evento entre el número de casos posibles y por ello varía de cero a uno; el primer límite implica el evento improbable y el segundo el evento seguro. Entonces, un evento anual extremo que sea igualado o excedido una vez en *promedio* cada 100 años tiene una probabilidad de excedencia de 0.01 y su complemento con la unidad será la probabilidad de que no sea excedido, es decir 0.99, o bien el 99%. Lo anterior implica que el evento extremo cuyo intervalo medio de recurrencia es de 10 000 años, su probabilidad de excedencia es 0.0001, esto es muy baja, de sólo el 0.01%.

Cuadro 1. Características generales, parámetros estadísticos y resultados de las pruebas de homogeneidad en los registros de precipitación máxima diaria anual de las 98 estaciones pluviométricas con más de 25 años de registro del estado de Zacatecas, México.

Núm.	Nombre de la estación	Registro		PMD³	ID³		Paráme	Parámetros estadísticos ⁴	lísticos ⁴				Pruebas estadísticas ⁵	s estadí	sticas ⁵	,	
Clave1	climatológica	Periodo	ND^2	Mínima	Máxima	Me	Cv	Cs	Ck	r_1	NN	PA	PS	TK	TS	PC	PB
1-1	Achimec	1947-2012	20	20.0	82.5	44.7	0.324	0.664	3.001	0.173	Н	Н	Н	Н	Н	Н	Н
2-2	Adjuntas del Refugio	1980-2012	31	21.0	86.0	44.7	0.369	0.893	3.561	-0.125	Н	Н	Н	NH	NH	Н	NH
3-3	Agua Nueva	1963-2012	43	17.1	76.0	36.3	0.335	0.987	4.841	0.100	Н	Н	Н	Н	Н	Н	Н
4-4	Ameca La Vieja	1977-2011	30	25.5	73.0	44.5	0.290	0.519	2.615	0.083	Н	Н	NH	Н	Н	Н	Н
5-5	Boca del Tesorero	1966-2012	44	20.2	82.0	43.6	0.302	0.899	3.941	-0.022	Н	Н	NH	Н	Н	Н	Н
9-9	Calera de Víctor Rosales	1961-2012	51	18.5	72.0	41.0	0.295	0.770	3.503	690:0	Н	Н	Н	Н	Н	Н	Н
7-7	Camacho	1974-2012	31	18.0	59.0	28.8	0.301	1.416	6.523	0.156	Н	Н	NH	Н	Н	Н	Н
6-8	Cañitas de Felipe Pescador	1974-2012	37	16.0	75.0	37.5	0.410	0.920	3.372	-0.009	Н	Н	Н	Н	Н	Н	Н
9-10	Coapas	1971-2012	41	23.0	67.8	41.6	0.280	0.588	3.026	-0.254	Н	Н	Н	Н	Н	Н	Н
10-11	Chalchihuites	1962-2011	47	20.0	104.5	43.7	0.386	1.102	5.336	0.027	Н	Н	Н	Н	Н	Н	Н
11-12	Chichimequillas	1981-2011	31	20.0	70.8	42.7	0.360	0.441	2.205	0.356	NH	HN	NH	NH	NH	NH	Н
12-13	Cedros	1971-2011	38	18.0	60.5	32.8	0.299	1.044	3.965	0.155	Н	Н	NH	Н	Н	Н	Н
13-14	Col. González Ortega	1970-2011	37	26.8	106.0	47.8	0.417	1.536	5.230	-0.171	Н	Н	Н	Н	Н	Н	Н
14-15	Concepción del Oro	1960-2011	47	13.8	83.1	37.3	0.419	0.765	3.412	-0.093	Н	Н	Н	Н	Н	Н	Н
15-16	Corrales	1978-2012	33	20.5	92.1	44.0	0.387	1.281	4.873	-0.221	Н	Н	Н	Н	Н	Н	Н
16-17	Cueva Grande	1977-2012	33	9.0	85.6	43.2	0.429	0.262	2.841	0.213	Н	Н	NH	NH	NH	NH	Н
17-18	El Arenal	1974-2012	39	20.0	100.0	49.0	0.396	0.797	3.505	-0.252	Н	Н	Н	Н	NH	Н	Н
18-19	El Cazadero	1958-2012	22	17.0	95.5	42.9	0.398	1.249	4.584	-0.034	Н	Н	Н	Н	Н	Н	Н
19-20	El Nigromante	1984-2012	29	17.5	79.0	42.8	0.365	0.630	3.126	0.056	Н	Н	Н	Н	Н	Н	Н
20-21	El Platanito	1957-2012	53	24.0	108.5	51.6	0.303	0.972	5.185	0.289	HN	HN	HZ	Н	Н	Н	HN
21-22	El Romerillo	1980-2011	30	27.3	78.2	46.4	0.296	0.588	2.803	-0.169	Н	Н	Н	Н	Н	Н	Н
22-23	El Rusio	1967-2011	45	20.0	71.5	41.8	0.382	0.349	1.928	0.075	Н	Н	Н	NH	NH	Н	Н
23-24	El Salvador	1984-2011	25	20.0	88.5	46.8	0.361	0.983	3.860	0.173	Н	Н	Н	Н	Н	Н	Н
24-25	El Sauz	1947-2012	99	21.2	67.2	38.5	0.287	0.660	2.808	0.040	Н	Н	Н	Н	Н	Н	Н
25-26	Espíritu Santo	1984-2012	28	24.0	85.0	46.9	0.365	0.907	3.409	-0.193	Н	Н	Н	Н	Н	Н	Н
26-27	Excamé	1946-2012	99	30.5	82.0	52.8	0.267	0.470	2.344	0.119	H	Н	Н	н	н	Н	н
27-28	Felipe Ángeles (S)	1979-2011	26	18.0	76.5	44.0	0.345	0.216	2.958	0.076	Н	Н	Н	Н	Н	Н	Н

Cuadro 1 (continuación). Características generales, parámetros estadísticos y resultados de las pruebas de homogeneidad en los registros de precipitación máxima diaria anual de las 98 estaciones pluviométricas con más de 25 años de registro del estado de Zacatecas, México.

30-31		1980-2012	33	26.0	78.0	44.3	0.326	0.794	3.044	0.240	Ľ	Ľ	H	HN	HN	НН
	Fresnillo	1950-2012	54	15.5	86.2	43.9	0.354	0.795	3.919	-0.178	Н	Н	н	Н	Н	Н
	García de la Cadena	1984-2012	27	33.2	82.3	57.7	0.237	0.091	2.990	-0.016	Н	Н	NH	Н	Н	н
31-32	Genaro Codina	1980-2012	28	27.7	8.99	43.5	0.251	0.413	2.491	-0.051	Н	Н	HN	Н	H	н н
32-33	Gral. Guadalupe Victoria	1966-2011	45	9.0	95.5	43.5	0.364	1.074	5.138	-0.322	Н	NH	Н	Н	Н	Н
33-34	Gruñidora	1964-2010	44	12.4	91.0	40.3	0.436	0.874	3.983	0.116	Н	Н	NH	NH	HN	H NH
34-35	Guadalupe	1979-2012	31	16.5	86.0	43.1	0.367	0.688	4.237	0.045	Н	Н	HN	Н	Н	Н Н
35-36	Huanusco	1967-2010	36	26.7	71.0	48.1	0.257	0.194	2.086	-0.108	Н	Н	Н	Н	H	н Н
36-37	Huitzila	1982-2012	25	36.3	98.5	61.7	0.271	0.520	2.776	0.125	Н	Н	Н	Н	Н	Н
37-38	Jalpa	1979-2012	34	24.0	75.7	50.3	0.210	0.505	4.198	-0.058	Н	Н	Н	Н	Н	Н Н
38-39	Jerez	1963-2012	42	23.0	69.3	40.8	0.286	0.820	3.265	290.0	Н	Н	Н	Н	Н	н н
39-40	Jiménez del Teúl	1963-2011	40	18.0	77.0	6.98	0.361	1.097	4.638	-0.065	Н	Н	Н	Н	H	н н
40-41	Juan Aldama	1975-2010	34	20.0	80.0	46.8	0.345	0.558	2.953	0.165	Н	Н	HN	Н	Н	Н Н
41-42	Juchipila	1947-2010	26	26.5	90.2	46.5	0.284	1.066	4.264	0.117	Н	Н	Н	Н	H	н н
42-43	La Florida	1956-2011	53	25.5	76.0	44.2	0.270	0.765	3.364	0.075	Н	Н	Н	Н	Н	Н
43-44	La Villita	1958-2011	53	35.2	82.1	53.9	0.206	0.576	3.107	0.028	Н	Н	Н	Н	Н	Н Н
44-45	Las Ánimas	1980-2011	28	19.9	26.8	42.6	0.280	0.519	4.684	0.158	Н	Н	NH	Н	H	HN H
45-46	Loreto	1964-2011	46	20.0	106.0	51.2	0.349	1.005	4.334	0.028	Н	Н	Н	Н	H	н н
46-47	Los Campos	1980-2011	30	18.0	98.5	48.9	0.356	1.058	4.537	0.117	Н	Н	NH	Н	H	н н
47-49	Luis Moya	1980-2010	27	25.5	89.7	51.7	0.336	0.572	3.164	0.177	Н	Н	NH	Н	H	H NH
48-50	Malpaso	1975-2011	35	17.0	71.0	39.3	0.390	0.591	2.925	0.180	Н	Н	HN	NH	HN	н Н
49-51	Mesillas	1980-2011	30	20.0	84.9	42.7	0.351	0.653	3.913	-0.204	Н	Н	Н	Н	H	н Н
50-52	Mezquital del Oro	1982-2011	26	37.0	102.3	59.2	0.262	1.255	4.698	0.093	Н	Н	Н	Н	H	н н
51-53	Milpillas de Allende	1979-2011	32	19.3	80.0	48.8	0.299	0.181	2.687	0.233	Н	Н	NH	NH	NH N	NH H
52-55	Momax	1980-2011	25	26.5	80.0	46.4	0.320	1.195	4.049	-0.308	Н	Н	Н	Н	H	н н
23-56	Monte Escobedo	1965-2011	44	31.5	79.3	49.5	0.228	0.546	2.989	0.038	Н	Н	Н	Н	H	н н
54-57	Moyahua de Estrada	1980-2011	31	33.0	80.0	6.05	0.240	0.659	2.990	600.0	Н	Н	Н	Н	H	н Н
55-58	Nochistlán	1950-2011	58	19.0	101.0	48.0	0.359	0.681	3.418	0.172	Н	Н	NH	Н	H	н Н
56-59	Nuevo Mercurio	1959-2011	38	16.2	76.0	35.3	0.422	1.151	3.934	-0.005	Н	Н	Н	Н	H	н н
27-60	Ojo Caliente	1969-2011	50	13.4	87.0	41.6	0.380	0.770	3.951	-0.057	Н	Н	Н	Н	H	н н
58-61	Pajaritos de la Sierra	1974-2009	29	28.0	71.2	49.5	0.237	0.088	2.171	0.415	NH	NH	NH	NH	NH N	NH H
29-65	Palmillas	1980-2011	27	22.0	82.0	44.5	0.319	1.014	4.640	0.241	Н	Н	NH	Н	Н	н н

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014 وزه المارية المارة الماية المارة المارة المارة المارة الماية المارة الماية الماية الماية الماية الماية الماية الماية الماية الماي الماية الماية الماية الماية الماي الماية الماي الماية الماي الماية الماي الماي الماي الماوي الماو الماة الماو الماو ال

60-64	Pastorías	1978-2011	29	23.0	83.0	47.2	0.333	0.325	2.638	0.322	HN	NH	HN	N N	H HN	H H
61-65	Pinos	1947-2011	55	25.0	93.8	48.9	0.326	0.762	3.353	-0.134	Н	н				
62-66	Pino Suárez	1980-2011	28	20.0	0.96	48.1	0.374	1.025	4.102	-0.221	H	н	H	E	Н	E
89-69	Presa El Chique	1950-2011	59	22.4	75.2	44.4	0.255	0.534	3.358	0.044	Н	Н	Н	H	Н Н	H
64-63	Presa Palomas	1967-2011	44	30.1	78.9	48.0	0.260	0.715	2.911	0.090	Н	Н	Н	H	н н	H
69-59	Presa Santa Rosa	1947-2011	62	22.8	79.0	41.2	0.335	0.975	3.571	0.039	Н	Н	Н	$_{ m H}$	н н	н н
02-99	Puerto de San Francisco	1970-2011	40	27.3	85.0	43.5	0.262	1.270	6.304	0.193	Н	Н	Н	н н	н н	н н
67-71	Purísima de Sifuentes	1978-2011	28	18.0	6.96	40.3	0.426	1.393	6.163	0.075	Н	Н	Н	н н	н н	HN I
68-73	Río Grande	1975-2011	37	18.0	0.06	41.8	0.413	1.093	4.186	-0.192	Н	Н	Н	$_{ m H}$	н н	н н
69-108	Sain Alto	1987-2011	25	22.5	91.0	44.8	0.352	1.426	5.581	-0.218	Н	Н	Н	H I	н н	н н
70-74	San Andrés	1973-2011	98	19.0	93.0	47.3	0.410	0.707	3.076	-0.268	Н	Н	Н	н н	н н	н н
71-75	San Antonio del Ciprés	1970-2011	37	16.0	82.3	44.9	0.314	0.442	3.105	0.070	Н	Н	Н	H I	н н	H
72-76	San Benito	1970-2011	28	20.0	86.0	46.2	0.434	0.683	2.623	-0.120	Н	Н	Н	H I	н н	н н
73-77	San Gil	1970-2011	36	13.0	76.0	35.5	0.417	0.770	3.645	-0.034	Н	Н	Н	H I	H NH	н н
74-78	San Isidro de los González	1976-2011	33	21.0	72.0	39.3	0.297	0.874	3.793	-0.253	Н	Н	Н	$_{ m H}$	н н	н н
75-79	San Jerónimo	1980-2011	30	20.5	0.69	40.0	0.307	0.543	2.991	-0.384	Н	Н	Н	H	н н	H I
26-80	San José de Llanetes	1976-2011	30	22.0	71.2	38.3	0.328	1.322	4.634	-0.014	Н	Н	Н	H	Н	HN
77-81	San Juan Capistrano	1972-2011	32	23.0	76.0	46.1	0.305	0.531	2.785	0.249	Н	Н	NH N	N HN	H HN	н н
78-82	San Pedro de la Sierra	1978-2010	25	20.0	72.0	44.5	0.310	0.496	2.938	-0.252	Н	Н	Н	H	н н	H I
28-62	San Pedro Piedra Gorda	1943-2011	89	16.0	80.0	41.5	0.266	0.409	4.058	-0.029	Н	Н	HN	н н	н н	н 1
80-85	San Tiburcio	1973-2011	37	16.0	80.0	40.1	0.384	0.839	3.441	-0.092	Н	Н	Н	H	н н	H H
81-86	Sierra Hermosa	1978-2011	32	22.0	98.0	46.7	0.461	0.925	3.239	-0.284	Н	Н	Н	H I	н н	I H
82-113	Sombrerete	1984-2011	28	20.6	76.8	38.7	0.352	0.959	4.283	-0.020	Н	Н	Н	H I	н н	I NH
83-88	Tayahua	1965-2010	44	20.0	81.1	43.9	0.280	0.571	3.738	0.158	Н	Н	HN	H	н	H
84-89	Tecomate	1948-1999	50	27.5	76.5	46.0	0.247	0.526	3.057	-0.175	Н	Н	Н	H I	н н	н н
82-90	Tepetongo	1980-2011	28	29.0	80.0	44.5	0.297	0.892	3.599	0.426	NH	NH	NH N	NH N	NH NH	н н
86-91	Teúl de González Ortega	1963-2011	44	20.5	93.0	51.6	0.302	0.697	3.492	-0.184	Н	Н	Н	H I	н н	н і
87-92	Tierra y Libertad	1982-2011	28	20.0	80.0	43.4	0.354	0.626	3.202	0.048	Н	Н	H	NH N	NH HN	I H
88-93	Tlachichila	1977-2011	25	30.4	8.76	54.7	0.266	1.152	5.146	-0.136	Н	Н	Н	H	н	HN
89-94	Tlaltenango	1950-2011	99	32.5	92.2	53.1	0.256	0.634	3.017	-0.061	Н	Н	Н	H	н н	H H
90-95	Trancoso	1952-2010	54	19.6	69.5	44.0	0.277	-0.144	2.559	0.081	Н	Н	Н	H	Н	H
96-16	Valparaíso	1975-2011	32	26.0	0.99	41.7	0.242	0.594	3.302	0.170	Н	Н	Н	NH N	H HN	H
92-97	Vicente Guerrero	1981-2011	25	22.6	71.0	47.4	0.266	0.171	2.936	0.182	Н	Н	Н	H	н	H H

Cuadro 1 (continuación). Características generales, parámetros estadísticos y resultados de las pruebas de homogeneidad en los registros de precipitación máxima diaria anual de las 98 estaciones pluviométricas con más de 25 años de registro del estado de Zacatecas, México.

03 08	03 08 Wills do Cos	1063 2011	ц/	21.0	100.2	10.3	0320	0.753	3 7 7 8	0.101	ב	ם	NIL	ם	ב	ļ	ב
07-07	VIIIA UE COS	1702-5051	£	0.12	7.001	たんせ	V.C.V	0.,0	0.4.0	0.171	11	11	TINT	11	11	11	11
94-99	Villa García	1960-2011	52	20.4	81.5	47.5	0.334	0.527	2.814	0.045	Н	Η	Н	Н	Н	Н	Н
95-100	95-100 Villa González Ortega	1978-2010	31	22.3	69.3	40.7	0.325	0.519	2.528	0.047	Н	Н	Н	Н	Н	Н	Н
96-101	96-101 Villa Hidalgo	1966-2011	43	15.8	97.5	46.5	0.372	0.775	3.752	0.042	Н	Н	Н	Н	Н	Н	Н
97-102	Villanueva	1963-2011	47	16.0	66.5	39.0	0.308	0.244	2.698	0.233	NH	NH	NH	Н	Н	Н	Н
98-103	98-103 Zacatecas	1953-2010	28	16.4	82.5	46.8	806.0	0.428	2.937	0.002	Н	Н	Н	HN	HN	HN	Н

Simbología:

número según Dirección Local Zacatecas de la Conagua.

² número de años (datos) procesados.

³ precipitación máxima diaria anual del registro.

Me media aritmética, en milímetros.

coeficiente de variación, adimensional. & & &

coeficiente de asimetría, adimensional.

coeficiente de correlación serial de orden uno, adimensional. coeficiente de curtosis, adimensional.

 r_1 coeficiente de correacion section r_2 VN prueba de Von Neumann (H = homogénea y NH = no homogénea).

prueba de Sneyers.

test de Kendall.

test de Spearman.

prueba de Cramer. prueba de Bartlett.

. P.C P.C P.B

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014

Cuadro 2. Estaciones pluviométricas eliminadas por mostrar componentes determinísticas.

Estación (clave)	Componente determinística detectada
1. Adjuntas del Refugio (2)	Tendencia y variabilidad.
2. Chichimequillas (12)	No aleatorio, persistencia, tendencia y cambio en la media.
3. Cueva Grande (17)	Persistencia ligera, tendencia y cambio en la media.
4. El Platanito (21)	No aleatorio, persistencia y variabilidad.
5. El Rusio (23)	Tendencia.
6. Felipe Ángeles (29)	Persistencia ligera y tendencia.
7. Gruñidora (34)	Persistencia ligera, tendencia y variabilidad.
8. Malpaso (50)	Persistencia ligera y tendencia.
9. Milpillas de Allende (53)	Persistencia ligera, tendencia y cambio en la media.
10. Pajaritos de la Sierra (61)	No aleatorio, persistencia, tendencia y cambio en la media.
11. Pastorías (64)	No aleatorio, persistencia y tendencia ligera.
12. San Juan Capistrano (81)	Persistencia ligera y tendencia.
13. Tepetongo (90)	No aleatorio, persistencia, tendencia y cambio en la media.
14. Tierra y Libertad (92)	Tendencia.
15. Valparaíso (96)	Tendencia.
16. Villanueva (102)	No aleatorio y persistencia.
17. Zacatecas (103)	Tendencia y cambio en la media.

Explicado el concepto de periodo de retorno de los eventos anuales, sus predicciones respectivas fueron obtenidas con base en dos modelos probabilísticos, cuya aplicación en el análisis de frecuencia ha sido establecida bajo precepto en Estados Unidos y en Inglaterra, éstos son respectivamente las distribuciones Log-Pearson tipo III (LP3) y la General de Valores Extremos (GVE), las cuales tienen tres parámetros de ajuste.

Ambos modelos probabilísticos se ajustaron con los dos métodos más comunes y consistentes; para la distribución LP3 se usó el método de momentos en el dominio logarítmico (WRC, 1977) y real (Bobée, 1975); en cambio, para el modelo GVE se empleó el método de sextiles (Clarke, 1973) y el de momentos *L* (Stedinger *et al.*, 1993; Hosking & Wallis, 1997).

En el cuadro 3 se indican para ambos modelos su menor error estándar de ajuste (Kite, 1977) obtenido y las predicciones asociadas con los periodos de retorno de 100, 500, 1 000, 5 000 y 10 000 años. Se han indicado con negritas el error estándar de ajuste (*EEA*)

del modelo LP3 cuando proviene del método de momentos en el dominio real y el de sextiles del modelo GVE, pues tales métodos son los que en menos ocasiones conducen al menor EEA. La enorme similitud que mostraron los EEA de ambos modelos probabilísticos, en los 81 registros de PMD procesados, definió que no era necesario probar y ajustar otra distribución, como por ejemplo la Logística Generalizada, recientemente establecida bajo precepto en Inglaterra (Mansell, 2003; Shaw et al., 2011). En la última columna del cuadro 3 se indica qué modelo probabilístico condujo al menor EEA y por lo tanto qué predicciones son las correspondientes a cada uno de los 81 registros procesados.

Únicamente en 19 de los 81 registros procesados, la distribución Log-Pearson tipo III condujo a un menor *EEA*, como se observa en la última columna del cuadro 3. En relación con los ajustes de la distribución GVE, la mayoría resultó tipo I o de Gumbel, con parámetro de forma (*k*) cercano a cero. La tipo II o de Fréchet sólo se presentó en cinco estaciones: Corrales, El Cazadero, Mezquital del Oro, Sain Alto

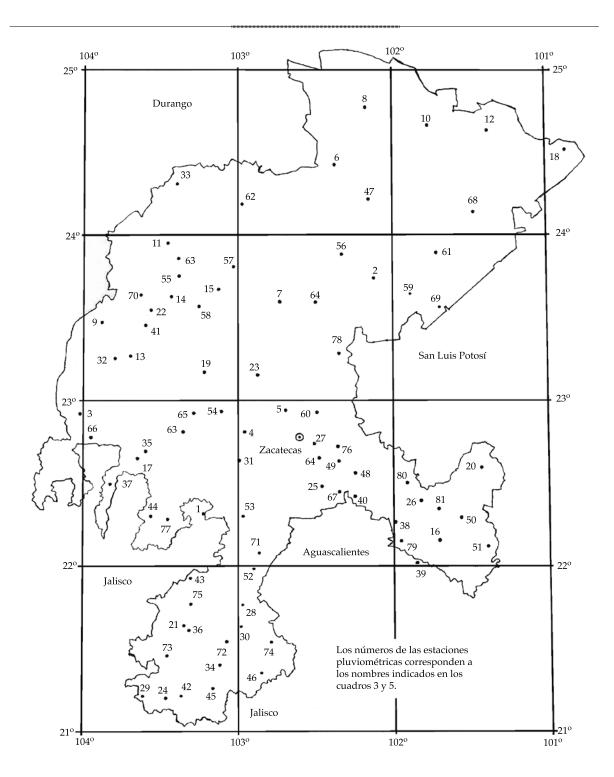


Figura 1. Localización geográfica de las 81 estaciones pluviométricas procesadas del estado de Zacatecas, México.

y Sierra Hermosa; en cambio, la tipo III o de Weibull se obtuvo en 10 estaciones: García de la Cadena, Huanusco, Mesillas, Presa El Chique,

San Antonio del Ciprés, San Pedro Piedra Gorda, Tayahua, Tecomate, Trancoso y Vicente Guerrero.

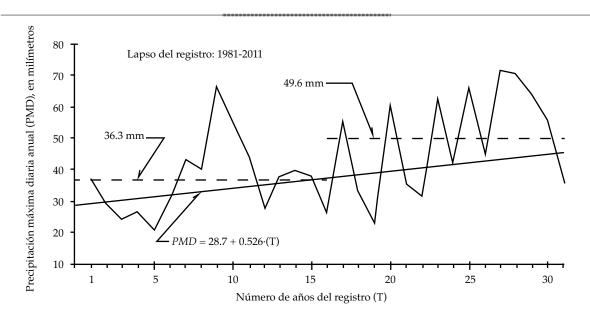


Figura 2. Serie cronológica de precipitación máxima diaria anual en la estación pluviométrica Chichimequillas del estado de Zacatecas, México.

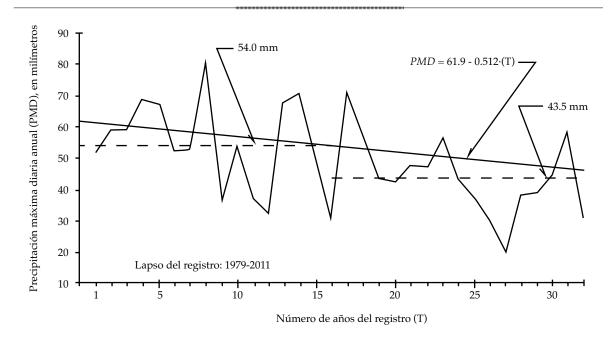


Figura 3. Serie cronológica de precipitación máxima diaria anual en la estación pluviométrica Milpillas de Allende del estado de Zacatecas, México.

Contraste de predicciones actuales y del estudio de 1976

Weiss (1964) estableció los factores medios por los que hay que multiplicar las precipitaciones

medidas en ciertos intervalos fijos para transformarlas a los valores reales observados de lluvia de tal duración. Para que la precipitación diaria corresponda a la de 24 horas de duración se debe multiplicar por 1.13. Establecida la co-

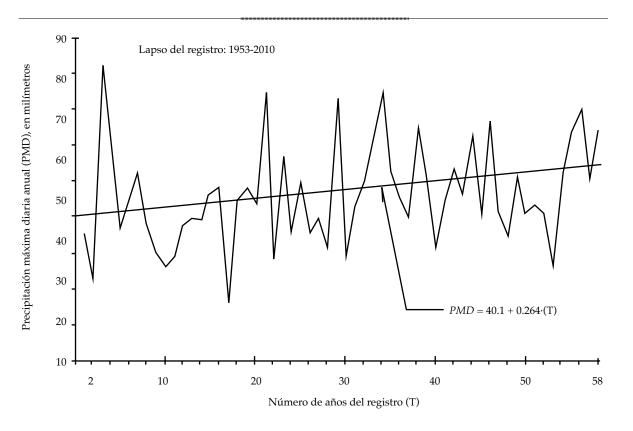


Figura 4. Serie cronológica de precipitación máxima diaria anual en la estación pluviométrica Zacatecas del estado de Zacatecas, México.

rrección anterior, se procedió a encontrar estaciones pluviométricas comunes al estudio de mediados de los años setenta (SRH, 1976) que abarcó todo México y del trabajo que se expone para Zacatecas; se encontraron 46, las cuales se detallan en el cuadro 4 por regiones hidrológicas. La Región Hidrológica 12 fue subdividida en una zona del oeste, la central (Juchipila) y la del este.

En el cuadro 4 se muestran las predicciones tomadas de los mapas de curvas de isovalores (SRH, 1976) disponibles sólo en los periodos de retorno 100, 1 000 y 10 000 años; además se tienen las predicciones adoptadas entre los modelos LP3 y GVE, previamente corregidas por el factor de Weiss y por último se exponen los cocientes entre los valores citados; esto es, entre el valor reciente y el anterior o de los mapas.

Lógicamente, se observa mayor dispersión en los cocientes del periodo de retorno de 10 000 años que en aquellos asociados al de 100 años. Los cocientes mínimos se presentan en Camacho y Trancoso, y los máximos en El Cazadero y Villa de Cos. En términos generales, en las regiones hidrológicas de climas áridos o semiáridos, es decir la 36 y 37, los cocientes son próximos a la unidad y tienen sus valores más bajos en la región hidrológica 12 central. Los valores medianos de los 46 cocientes muestran gran similitud alrededor de un valor de 0.88, por lo cual se concluye que los mapas de curvas isomáximas (SRH, 1976) son todavía válidos para diseño. Tales mapas se presentan en las figuras 5, 6 y 7.

Estimación estadística de la PMP puntual

El método estadístico de David M. Hershfield para estimar la precipitación máxima probable (*PMP*) puede ser consultado en Hershfield (1961, 1965), WMO (1973) y Campos (1998). En el cuadro 5 se han concentrado los resultados de

Cuadro 3. Predicciones de precipitación máxima diaria anual (mm) en los periodos de retorno indicados (años), con dos modelos probabilísticos, en 81 estaciones pluviométricas del estado de Zacatecas, México.

			Distribuc	ión Log-Pe	Distribución Log-Pearson tipo III (LP3)	III (LP3)		Di	Distribución General de Valores Extremos (GVE)	General de	Valores Ex	tremos (GV	E)	Modelo
Num.	Estacion pluviometrica	EEA	100	500	1 000	5 000	10 000	EEA	100	500	1 000	5 000	10 000	adoptado
1	Achimec	1.767	6.68	107.4	115.0	133.0	140.9	1.745	90.3	107.5	114.7	130.9	137.7	GVE
2	Agua Nueva	2.274	73.5	87.7	93.9	108.3	114.6	2.264	75.1	91.4	5.86	115.2	122.5	GVE
3	Ameca La Vieja	2.782	84.6	100.0	106.6	122.4	129.3	2.701	83.2	96.0	101.1	112.1	116.5	GVE
4	Boca del Tesorero	1.963	84.6	100.9	108.1	125.2	132.8	1.803	87.0	104.9	112.7	131.1	139.1	GVE
5	Calera de Víctor Rosales	1.697	77.1	90.4	0.96	109.2	114.9	1.629	77.8	8.06	7:96	108.1	113.0	GVE
9	Camacho	2.183	59.7	75.9	83.7	104.1	114.1	2.220	58.0	71.6	2.77	92.8	2.66	LP3
7	Cañitas de Felipe Pescador	2.611	91.4	117.3	129.4	159.7	173.8	2.585	92.3	119.2	131.7	163.2	177.8	GVE
8	Coapas	1.568	76.3	9.88	93.8	105.9	111.1	1.487	76.6	88.1	92.7	102.7	106.7	GVE
6	Chalchihuites	3.208	6.86	122.7	133.3	159.2	170.9	3.376	95.2	114.5	122.6	140.8	148.5	LP3
10	Cedros	1.394	9.99	83.0	2.06	110.2	119.5	1.299	9.89	87.2	96.1	119.0	129.9	GVE
11	Col. González Ortega	4.196	131.4	192.0	224.9	322.2	375.2	4.349	133.5	201.2	239.5	357.1	423.5	LP3
12	Concepción del Oro	1.829	87.8	107.9	116.5	136.9	145.8	1.914	86.7	105.7	113.6	131.9	139.5	LP3
13	Corrales	3.432	106.4	140.5	157.1	200.9	222.4	3.403	108.9	147.2	166.4	218.4	244.4	GVE
14	El Arenal	2.301	112.1	137.9	149.3	176.3	188.3	2.410	110.3	134.0	144.0	166.8	176.5	LP3
15	El Cazadero	2.345	102.7	133.1	147.5	184.7	202.4	2.226	106.3	142.6	160.4	208.2	231.9	GVE
16	El Nigromante	2.036	2.68	106.1	113.0	128.6	135.2	1.899	92.0	109.9	117.3	134.0	140.9	GVE
17	El Romerillo	2.318	6.06	109.2	117.4	137.1	146.0	2.163	89.0	103.9	110.0	123.3	128.8	GVE
18	El Salvador	3.653	102.4	126.5	137.4	164.1	176.2	3.534	107.0	136.7	150.6	185.5	201.8	GVE
19	El Sauz	1.302	73.9	88.4	94.9	110.6	117.6	1.276	73.6	87.1	92.8	105.7	111.1	GVE
20	Espíritu Santo	3.427	108.7	140.0	154.9	193.1	211.4	3.317	108.7	139.0	153.1	188.6	205.1	GVE
21	Excamé	2.233	61.6	104.4	109.5	120.9	125.6	2.193	94.6	107.9	113.1	124.3	128.6	GVE
22	Felipe Ángeles (S)	2.240	80.9	88.8	91.5	8.96	98.7	2.081	81.5	89.0	91.5	96.1	97.7	GVE
23	Fresnillo	2.756	90.2	106.9	114.0	130.3	137.4	2.759	92.9	112.7	121.3	141.2	149.8	LP3
24	García de la Cadena	3.055	89.4	0.96	98.4	103.2	104.9	3.014	88.8	94.0	95.7	98.5	99.4	GVE
25	Genaro Codina	1.811	76.2	87.9	92.9	104.5	109.6	1.625	75.2	84.6	88.2	92.6	98.4	GVE
26	Gral. Guadalupe Victoria	3.229	92.4	111.7	120.2	140.0	148.8	2.983	6:96	122.0	133.5	162.0	175.0	GVE

Cuadro 3 (continuación). Predicciones de precipitación máxima diaria anual (mm) en los periodos de retorno indicados (años), con dos modelos probabilísticos, en 81 estaciones pluviométricas del estado de Zacatecas, México.

	3.790	89.1	104.8	111.3	125.9	132.0	3.884	83.2	92.7	0.96	102.4	104.7	LP3
	2.434	80.2	89.1	92.6	100.1	103.1	2.268	80.4	87.9	90.5	95.4	97.1	GVE
	3.077	113.4	133.1	141.7	161.8	170.7	2.877	112.2	128.6	135.2	149.2	154.8	GVE
	2.711	79.2	88.2	91.9	100.1	103.6	2.714	82.7	95.5	100.8	113.2	118.5	LP3
	1.700	0.62	95.7	103.3	121.8	130.3	1.598	80.3	97.4	105.0	123.1	131.2	GVE
Jiménez del Teúl	2.155	81.6	102.0	111.4	134.6	145.4	2.110	81.5	101.0	1.601	130.7	140.0	GVE
	3.576	92.1	106.0	111.5	123.6	128.5	3.565	94.1	109.4	115.4	128.3	133.4	GVE
	1.912	90.3	110.4	119.6	142.7	153.4	1.815	93.5	117.2	128.4	156.4	170.3	GVE
	1.591	81.2	95.8	102.2	117.5	124.4	1.578	80.4	93.2	98.4	110.0	114.8	GVE
	1.526	85.8	96.2	100.5	110.2	114.3	1.539	85.6	95.2	6.86	106.6	109.6	LP3
	2.711	75.6	86.1	90.3	8.66	103.7	2.773	71.8	78.1	80.3	84.3	85.7	LP3
	3.011	105.8	126.8	135.9	157.3	166.7	2.732	110.3	136.1	147.6	175.2	187.4	GVE
	3.598	102.4	123.3	132.3	153.6	162.9	3.196	110.9	142.4	157.3	195.2	213.1	GVE
	3.139	102.3	118.9	125.7	141.0	147.4	3.054	103.4	120.1	126.7	140.9	146.5	GVE
	2.753	85.1	6.86	103.6	115.2	120.0	2.714	84.7	2:96	101.3	110.7	114.2	GVE
Mezquital del Oro	3.259	114.9	145.7	160.9	201.2	221.1	3.212	118.3	155.1	174.0	226.2	253.0	GVE
	3.832	103.6	137.3	154.3	200.7	224.2	3.879	105.7	143.7	163.4	218.6	247.1	LP3
Monte Escobedo	1.172	82.8	94.8	6.66	111.8	117.0	1.030	82.2	92.2	0.96	104.1	107.2	GVE
Moyahua de Estrada	1.774	89.3	104.7	111.6	128.0	135.4	1.808	82.8	9.96	100.8	109.7	113.2	LP3
	2.013	9.66	117.8	125.4	142.6	150.0	1.972	100.0	117.8	125.0	140.8	147.2	GVE
Nuevo Mercurio	2.631	92.5	126.0	142.7	187.9	210.6	2.663	93.0	128.1	145.8	194.3	218.9	LP3
	2.554	88.8	105.8	113.0	129.4	136.3	2.575	86.3	100.0	105.3	116.4	120.7	LP3
	3.064	88.4	105.8	113.4	131.4	139.4	3.207	87.2	103.2	109.9	125.1	131.4	LP3
	1.531	6.66	120.9	130.2	152.6	162.7	1.515	6.86	117.8	125.7	143.6	151.1	GVE
	3.026	108.1	135.0	147.3	177.6	191.4	2.800	113.1	146.2	161.9	201.8	220.7	GVE
Presa El Chique	1.115	76.0	86.2	90.4	6.66	103.9	1.040	75.9	84.8	88.2	65.2	8.26	GVE
	1.735	88.4	105.7	113.5	132.5	141.2	1.640	0.06	106.9	114.2	131.4	138.9	GVE
Presa Santa Rosa	1.885	89.5	113.4	124.7	153.6	167.3	1.834	90.4	114.6	125.9	154.4	167.7	GVE

Cuadro 3 (continuación). Predicciones de precipitación máxima diaria anual (mm) en los periodos de retorno indicados (años), con dos modelos probabilísticos, en 81 estaciones pluviométricas del estado de Zacatecas, México. אר Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014 פספ פספ דיני

				4										
25	Puerto de San Francisco	2.472	80.5	97.1	104.7	123.5	132.2	2.631	77.6	90.1	95.3	107.1	111.9	LP3
26	Purísima de Sifuentes	3.790	99.5	128.2	141.6	175.4	191.2	3.827	6.86	127.0	139.9	172.1	186.9	LP3
22	Río Grande	2.485	103.6	134.9	149.8	187.9	206.0	2.421	104.6	137.3	152.9	192.9	211.9	GVE
28	Sain Alto	3.671	102.3	133.8	149.3	190.4	210.6	3.653	105.3	142.6	161.7	214.3	241.2	GVE
29	San Andrés	2.471	110.3	135.4	146.3	172.0	183.3	2.633	112.3	140.4	152.8	182.5	195.7	LP3
09	San Antonio del Ciprés	2.732	83.9	0.96	100.8	111.6	116.0	2.612	84.6	626	100.2	109.0	112.3	GVE
61	San Benito	4.202	104.1	123.2	131.0	148.1	155.2	4.065	115.4	145.5	158.9	191.0	205.2	GVE
62	San Gil	1.731	81.7	8.86	106.0	122.5	129.6	1.718	81.2	9.76	104.4	119.4	125.6	GVE
63	San Isidro de los González	1.519	77.5	94.1	101.5	119.8	128.2	1.325	78.7	95.3	102.6	119.9	127.6	GVE
64	San Jerónimo	1.638	77.0	90.3	0.96	109.0	114.6	1.500	76.3	9.78	92.0	101.4	105.1	GVE
65	San José de Llanetes	2.774	86.7	115.8	130.6	171.1	191.8	2.803	88.3	120.7	137.6	185.4	210.3	LP3
99	San Pedro de la Sierra	2.410	82.8	94.4	99.1	109.4	113.6	2.267	86.1	9.66	105.0	116.5	121.1	GVE
29	San Pedro Piedra Gorda	2.096	67.4	73.0	75.0	78.9	80.4	2.084	67.6	72.7	74.3	77.3	78.3	GVE
89	San Tiburcio	2.439	2.06	112.0	121.5	144.4	154.7	2.345	92.2	114.5	124.4	148.0	158.4	GVE
69	Sierra Hermosa	4.015	131.4	180.2	204.3	268.9	300.9	3.962	128.6	174.0	196.2	254.7	283.3	GVE
70	Sombrerete	2.198	83.8	103.5	112.5	134.4	144.4	2.092	83.8	102.3	110.3	129.2	137.4	GVE
71	Tayahua	2.232	78.7	90.1	8.46	105.4	109.8	2.188	777.7	87.0	90.4	97.5	100.1	GVE
72	Tecomate	1.179	78.8	90.1	94.8	105.6	110.3	1.105	78.0	87.3	8.06	98.1	100.8	GVE
73	Teúl de González Ortega	2.179	2:96	112.3	118.8	133.6	140.0	2.020	100.0	118.1	125.6	142.6	149.7	GVE
74	Tlachichila	3.142	102.7	124.4	134.3	159.1	170.6	2.982	106.3	132.1	144.3	175.0	189.4	GVE
75	Tlaltenango	1.671	95.4	112.1	119.3	136.7	144.5	1.577	94.6	108.8	114.6	127.3	132.4	GVE
92	Trancoso	1.100	70.7	75.0	76.4	78.9	79.8	1.012	69.3	72.5	73.4	74.8	75.2	GVE
77	Vicente Guerrero	2.417	76.1	81.7	83.7	97.6	89.0	2.229	80.0	87.5	90.1	95.0	2.96	GVE
78	Villa de Cos	1.836	104.6	125.9	135.1	156.8	166.3	1.807	104.7	125.4	134.0	153.6	161.7	GVE
26	Villa García	2.086	94.5	110.4	117.1	132.1	138.4	1.991	93.7	108.0	113.5	125.1	129.6	GVE
80	Villa González Ortega	2.142	83.2	100.3	107.8	125.7	133.7	1.981	81.8	0.96	101.8	114.6	119.8	GVE
81	Villa Hidalgo	2.449	87.8	116.2	124.0	141.7	149.3	2.267	100.1	120.1	128.4	147.2	155.1	GVE
Simbolo	Simbología: EEA error estándar de aiuste, en milímetros	milímetne												

Simbología: EEA error estándar de ajuste, en milímetros.

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014

	E ('	Bolet	ín de torm	entas	Estimac	ión proba	bilística	Coc	ientes: VI	R/VA*
Núm.	Estación pluviométrica	100	1 000	10 000	100	1 000	10 000	100	1 000	10 000
			Región	Hidrológi	ica núm. 3	6				
1	Cedros	125	170	225	77.5	108.6	146.8	0.620	0.639	0.652
2	Juan Aldama	100	125	175	106.3	130.4	150.7	1.063	1.043	0.861
3	San Gil	115	155	190	91.8	118.0	141.9	0.798	0.761	0.747
4	Río Grande	105	150	180	118.2	172.8	239.4	1.126	1.152	1.330
5	El Cazadero	100	125	175	120.1	181.3	262.0	1.201	1.450	1.497
6	El Arenal	125	170	200	126.7	168.7	212.8	1.014	0.992	1.064
7	Sain Alto	115	155	200	119.0	182.7	272.6	1.035	1.179	1.363
8	El Sauz	100	125	150	83.2	104.9	125.5	0.832	0.839	0.837
9	Presa Santa Rosa	100	125	150	102.2	142.3	189.5	1.022	1.138	1.263
			Región l	Hidrológi	ica núm. 3	7				
10	Concepción del Oro	100	150	180	99.2	131.6	164.8	0.992	0.877	0.916
11	Camacho	125	175	225	67.5	94.6	128.9	0.540	0.541	0.573
12	Nuevo Mercurio	100	150	190	104.5	161.3	238.0	1.045	1.075	1.253
13	San Tiburcio	100	125	180	104.2	140.6	179.0	1.042	1.125	0.994
14	San Benito	130	200	250	130.4	179.6	231.9	1.003	0.898	0.928
15	Agua Nueva	100	125	150	84.9	111.3	138.4	0.849	0.890	0.923
16	Guadalupe	100	140	175	100.7	125.8	149.2	1.007	0.899	0.853
17	Cañitas de Felipe P.	100	150	200	104.3	148.8	200.9	1.043	0.992	1.005
18	Villa de Cos	100	125	150	118.3	151.4	182.7	1.183	1.211	1.218
19	Fresnillo	100	125	150	101.9	128.8	155.3	1.019	1.030	1.035
20	Calera de Víctor R.	100	125	150	87.9	108.7	127.7	0.879	0.870	0.851
21	San Antonio del Ciprés	100	125	150	95.6	113.2	126.9	0.956	0.906	0.846
22	Villa Hidalgo	125	200	250	113.1	145.1	175.3	0.905	0.726	0.701
23	Pinos	105	150	190	111.8	142.0	170.7	1.065	0.947	0.898
			Región	Hidrológi	ica núm. 1	1				
24	Sombrerete	130	175	220	94.7	124.6	155.3	0.728	0.712	0.706
25	Chalchihuites	150	200	275	111.8	150.6	193.1	0.745	0.753	0.702
		R	egión Hid	rológica 1	núm. 12 (o	este)				
26	Jiménez del Teúl	125	150	200	92.1	124.0	158.2	0.737	0.827	0.791
27	San José de Llanetes	120	150	200	98.0	147.6	216.7	0.817	0.984	1.084
28	Achimec	125	150	200	102.0	129.6	155.6	0.816	0.864	0.778
29	Monte Escobedo	125	150	200	92.2	108.5	121.1	0.738	0.723	0.606
		Re	egión Hidr	ológica n	úm. 12 (ce	ntral)				
30	Boca del Tesorero	100	150	160	98.3	127.4	157.2	0.983	0.849	0.983
31	Presa Palomas	100	150	160	101.7	129.0	157.0	1.017	0.860	0.981
32	Tayahua	100	150	160	87.8	102.2	113.1	0.878	0.681	0.707
33	Presa El Chique	100	150	160	85.8	99.7	110.5	0.858	0.665	0.691
34	Tlaltenango	125	150	200	106.9	129.5	149.6	0.855	0.863	0.748
35	Excamé	125	150	200	106.9	127.8	145.3	0.855	0.852	0.727
36	La Villita	125	150	200	97.0	113.6	129.2	0.776	0.757	0.646
~-	l	l	l	I I		1	1	l	ı	I -

37

Tecomate

125

150

200

88.1

102.6

113.9

0.705

0.684

0.570

Cuadro 4. Contraste de predicciones de lluvia en 24 horas con periodos de retorno de 100, 1 000 y 10 000 años,

אר Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014 פספ הייניים דיניים

Cuadro 4 (continuación). Contraste de predicciones de lluvia en 24 horas con periodos de retorno de 100, 1 000 y 10 000 años, en 46 estaciones pluviométricas comunes a los estudios de 1976 y actual.

38	Teúl de González O.	125	150	200	113.0	141.9	169.2	0.904	0.946	0.846
39	Juchipila	125	150	200	105.7	145.1	192.4	0.846	0.967	0.962
40	Nochistlán	125	150	200	113.0	141.3	166.3	0.904	0.942	0.831
	1]	Región Hic	lrológica	núm. 12 (e	este)				
41	Trancoso	120	150	170	78.3	82.9	85.0	0.653	0.553	0.500
42	Ojo Caliente	125	170	200	100.3	127.7	154.0	0.802	0.751	0.770
43	San Pedro Piedra G.	100	125	160	76.4	84.0	88.5	0.764	0.672	0.553
44	Mesillas	100	130	150	95.7	114.5	129.0	0.957	0.881	0.860
45	Loreto	100	150	200	124.6	166.8	211.8	1.246	1.112	1.059
46	Villa García	120	150	200	105.9	128.3	146.4	0.883	0.855	0.732
Valor n	nínimo	100	125	150	67.5	82.9	85.0	0.540	0.541	0.500
Valor n	náximo	150	200	275	130.4	182.7	272.6	1.246	1.450	1.497
Valor d	e la media aritmética	-	-	-	-	-	-	0.907	0.890	0.879
Valor n	nediano muestral	-	-	-	-	-	-	0.893	0.873	0.848
Valor n	nediano poblacional	-	-	-	-	-	-	0.898	0.878	0.861

valor reciente (VR), valor anterior (VA).

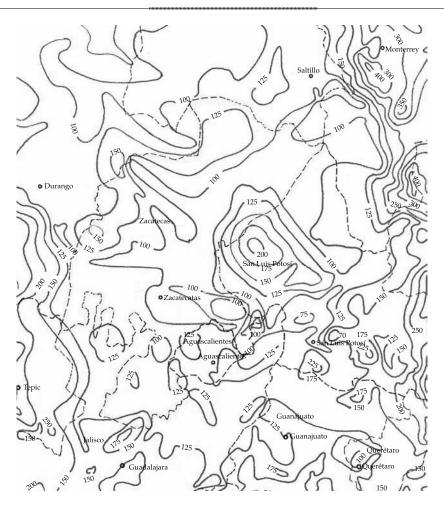


Figura 5. Curvas isomáximas de periodo de retorno de cien años del estado de Zacatecas (SRH, 1976).



Figura 6. Curvas isomáximas de periodo de retorno de mil años del estado de Zacatecas (SRH, 1976).

la aplicación de este método en los 81 registros de *PMD*. Se observa que las estimaciones de *PMP* muestran gran variabilidad, fluctuando de 196.5 mm en Camacho a 507.0 mm en Sierra Hermosa; ambas estaciones pertenecientes a la Región Hidrológica núm. 37, sin embargo su altitud es bastante diferente, con 1 658 msnm en Camacho y 2 100 msnm en Sierra Hermosa.

Cocientes de la PMP puntual

En las dos últimas columnas del cuadro 5 se presentan los cocientes de la *PMP* a la máxima precipitación diaria anual observada (*Po*) y a la predicción de *PMD* de 10 000

años (P_{Tr}) . La media aritmética, la moda y la mediana poblacional del primer cociente son, respectivamente, 4.177, 4.117 y 4.157; en cambio, para el segundo cociente son 2.158, 2.044 y 2.120. La moda y la mediana se obtuvieron con base en la distribución Gamma Mixta. Entonces un valor de 4.20 veces la Po y otro de 2.20 por la P_{Tr} conducirá a estimaciones rápidas y aproximadas de la PMP puntual de 24 horas de duración. Para estimaciones más precisas se pueden construir curvas de isovalores de PMP, o bien realizar un transporte ponderado al sitio de interés, empleando las magnitudes del cuadro 5 que sean cercanas y pertenezcan a la misma zona geográfica.

Figura 7. Curvas isomáximas de periodo de retorno de diez mil años del estado de Zacatecas (SRH, 1976).

Estimación de la PMP para un área y diversas duraciones

Ha sido establecido que los valores puntuales de PMP obtenidos al aplicar el método de Hershfield a un registro pluviométrico de PMD son representativos de un área de 25 km². Entonces, para estimar la *PMP* correspondiente a una cierta área o cuenca (A) mayor de 25 km², se debe aplicar un factor de reducción por área (FRA), ya que todas las tormentas son menores conforme abarcan más extensión. La WMO (1973) presentó unas curvas promedio de reducción por área, obtenidas a partir de análisis P-A-D de grandes tormentas de tipo general. La curva relativa a la duración de 24 horas ha sido representada por el siguiente polinomio de 4º grado:

$$FRA = 1.012021 - 5.985305 \cdot 10^{-4} \cdot A + 1.39148 \cdot 10^{-6} \cdot A^{2}$$
$$-1.548155 \cdot 10^{-9} \cdot A^{3} + 6.121556 \cdot 10^{-13} \cdot A^{4}$$
 (1)

en la cual, el área A está en km². La expresión anterior se obtuvo con base en 11 puntos y tiene un coeficiente de determinación de 0.99874 y un error estándar de la estimación de 0.00257 (Campos, 1998).

En cuencas grandes, donde es común tener dentro de ella varias estaciones pluviométricas, primero se debe obtener el valor ponderado de PMP puntual, por ejemplo, por medio del

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014

Cuadro 5. Resultados de la aplicación del método estadístico de D. M. Hershfield para estimar la PMP (mm) en 24 horas puntual, en las 81 estaciones pluviométricas indicadas del estado de Zacatecas.

27.6		Media	s (mm)	D. E. ¹	(mm)	F.	F. ²	PMP ³	Cocie	entes ⁴
Núm.	Estación pluviométrica	\overline{X}_{n}	\overline{X}_{n-m}	S _n	S_{n-m}	Km _o	Km	(mm)	PMP/Po	PMP/P _{Tr}
1	Achimec	44.668	43.896	14.494	13.566	2.846	17.565	344.7	4.178	2.215
2	Agua Nueva	36.316	35.371	12.174	10.606	3.831	17.968	278.9	3.670	2.015
3	Ameca La Vieja	44.467	43.483	12.909	11.938	2.473	17.534	330.0	4.521	2.507
4	Boca del Tesorero	43.595	42.702	13.170	11.902	3.302	17.610	309.9	3.779	1.972
5	Calera de Víctor Rosales	40.998	40.378	12.095	11.369	2.781	17.736	295.0	4.097	2.310
6	Camacho	28.848	27.843	8.674	6.740	4.622	18.327	196.5	3.331	1.524
7	Cañitas de Felipe Pescador	37.476	36.433	15.357	14.185	2.719	17.903	370.4	4.939	1.844
8	Coapas	41.634	40.980	11.667	11.028	2.432	17.688	293.8	4.333	2.437
9	Chalchihuites	43.653	42.330	16.837	14.343	4.335	17.634	360.6	3.451	1.867
10	Cedros	32.834	32.086	9.814	8.784	3.235	18.124	241.7	3.995	1.647
11	Col. González Ortega	47.770	46.153	19.925	17.573	3.406	17.428	449.1	4.237	1.059
12	Concepción del Oro	37.300	36.304	15.627	14.213	3.292	17.929	356.2	4.286	2.162
13	Corrales	44.027	42.525	17.048	14.937	3.319	17.592	395.7	4.296	1.433
14	El Arenal	48.962	47.618	19.395	17.723	2.956	17.364	448.3	4.483	2.107
15	El Cazadero	42.905	41.931	17.056	15.596	3.435	17.666	386.1	4.043	1.473
16	El Nigromante	42.786	41.493	15.628	14.247	2.633	17.627	384.6	4.868	2.416
17	El Romerillo	46.427	45.331	13.734	12.572	2.614	17.444	345.4	4.417	2.373
18	El Salvador	46.812	45.075	16.919	14.832	2.928	17.431	404.3	4.568	1.773
19	El Sauz	38.473	38.031	11.060	10.542	2.767	17.868	271.6	4.042	2.163
20	Espíritu Santo	46.957	45.548	17.153	15.742	2.506	17.424	421.7	4.961	1.820
21	Excamé	52.759	52.309	14.089	13.713	2.165	17.195	345.4	4.212	2.377
22	Felipe Ángeles (S)	43.973	42.672	15.185	13.940	2.427	17.555	381.3	4.984	3.454
23	Fresnillo	43.900	43.102	15.519	14.506	2.971	17.609	363.2	4.213	2.339
24	García de la Cadena	57.700	56.754	13.680	13.019	1.962	16.888	363.2	4.413	3.234
25	Genaro Codina	43.532	42.670	10.905	10.095	2.390	17.565	288.2	4.314	2.592
26	Gral. Guadalupe Victoria	43.460	42.277	15.828	13.854	3.842	17.633	351.3	3.679	1.776
27	Guadalupe	43.129	41.700	15.846	13.938	3.178	17.625	374.9	4.359	2.513
28	Huanusco	48.131	47.477	12.348	11.880	1.980	17.363	323.2	4.552	2.946
29	Huitzila	61.652	60.117	16.736	15.192	2.527	16.719	416.1	4.224	2.379
30	Jalpa	50.335	49.567	10.547	9.696	2.695	17.257	277.2	3.662	2.368
31	Jerez	40.793	40.098	11.682	10.912	2.676	17.733	289.4	4.176	1.952
32	Jiménez del Teúl	36.937	35.910	13.321	11.781	3.488	17.936	309.9	4.025	1.959
33	Juan Aldama	46.824	45.818	16.170	15.303	2.234	17.436	403.4	5.043	2.676
34	Juchipila	46.547	45.795	13.206	11.977	3.707	17.488	308.1	3.416	1.601
35	La Florida	44.211	43.600	11.930	11.177	2.899	17.584	291.7	3.838	2.249
36	La Villita	53.868	53.325	11.119	10.495	2.742	17.129	282.2	3.437	2.185
37	Las Ánimas	42.607	41.341	11.918	10.044	3.530	17.631	286.2	3.727	2.442
38	Loreto	51.150	49.931	17.846	15.995	3.505	17.271	398.8	3.762	1.883
39	Los Campos	48.907	47.197	17.404	14.928	3.437	17.354	400.4	4.065	1.663
40	Luis Moya	51.744	50.285	17.397	15.966	2.469	17.191	429.0	4.783	2.591
41	Mesillas	42.687	41.231	14.972	12.897	3.386	17.644	351.5	4.140	2.724
42	Mezquital del Oro	59.011	57.346	15.218	12.767	3.521	16.860	357.4	3.494	1.250
43	Momax	46.424	45.025	14.865	13.398	2.610	17.433	370.5	4.631	1.462

אר Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014 פספ הייניים דיניים

Cuadro 5 (continuación). Resultados de la aplicación del método estadístico de D. M. Hershfield para estimar la PMP (mm) en 24 horas puntual, en las 81 estaciones pluviométricas indicadas del estado de Zacatecas.

44	Monte Escobedo	49.477	48.784	11.275	10.415	2.930	17.321	280.6	3.538	2.316
45	Moyahua de Estrada	50.884	49.913	12.193	11.117	2.706	17.229	312.7	3.909	2.044
46	Nochistlán	47.986	47.056	17.230	15.846	3.404	17.427	391.4	3.875	2.353
47	Nuevo Mercurio	35.263	34.162	14.864	13.406	3.121	18.019	349.9	4.604	1.470
48	Ojo Caliente	41.632	40.706	15.817	14.548	3.182	17.719	365.1	4.197	2.370
49	Palmillas	44.489	43.046	14.208	12.308	3.165	17.542	341.5	4.165	2.168
50	Pinos	48.876	48.044	15.921	14.814	3.089	17.377	370.9	3.954	2.172
51	Pino Suárez	48.050	46.274	17.969	15.608	3.186	17.389	418.6	4.360	1.678
52	Presa El Chique	44.381	43.850	11.316	10.647	2.945	17.580	278.7	3.706	2.522
53	Presa Palomas	47.966	47.247	12.458	11.644	2.718	17.393	306.4	3.883	1.952
54	Presa Santa Rosa	41.210	40.590	13.816	13.033	2.947	17.740	327.8	4.149	1.730
55	Puerto de San Francisco	43.468	42.403	11.369	9.279	4.591	17.616	256.5	3.018	1.717
56	Purísima de Sifuentes	40.257	38.181	17.169	13.447	4.322	17.787	365.6	3.796	1.692
57	Río Grande	41.811	40.472	17.270	15.447	3.206	17.703	400.2	4.447	1.671
58	Sain Alto	44.760	42.833	15.770	12.754	3.777	17.541	354.3	3.893	1.300
59	San Andrés	47.319	46.014	19.406	18.015	2.608	17.432	461.4	4.961	2.228
60	San Antonio del Ciprés	44.905	43.867	14.117	12.803	3.002	17.538	341.0	4.143	2.687
61	San Benito	46.175	44.700	20.032	18.800	2.197	17.466	493.3	5.736	2.127
62	San Gil	35.464	34.306	14.806	13.265	3.143	18.008	350.0	4.605	2.466
63	San Isidro de los González	39.327	38.306	11.685	10.267	3.282	17.800	285.4	3.964	1.979
64	San Jerónimo	40.007	39.007	12.276	11.182	2.682	17.755	310.3	4.497	2.613
65	San José de Llanetes	38.340	37.207	12.583	11.139	3.052	17.845	308.5	4.333	1.423
66	San Pedro de la Sierra	44.540	43.396	13.802	12.831	2.229	17.514	356.6	4.953	2.606
67	San Pedro Piedra Gorda	41.535	40.961	11.066	10.078	3.874	17.728	262.7	3.284	2.969
68	San Tiburcio	40.135	39.028	15.419	14.067	2.913	17.775	368.3	4.604	2.058
69	Sierra Hermosa	46.672	45.016	21.496	19.667	2.694	17.467	507.0	5.173	1.584
70	Sombrerete	38.650	37.237	13.602	11.579	3.417	17.835	320.9	4.178	2.067
71	Tayahua	43.939	43.074	12.314	11.027	3.448	17.592	290.9	3.587	2.572
72	Tecomate	45.962	45.339	11.333	10.550	2.954	17.497	280.0	3.660	2.458
73	Teúl de González Ortega	51.566	50.602	15.584	14.381	2.948	17.236	366.7	3.943	2.168
74	Tlachichila	54.680	52.883	14.556	11.700	3.839	17.055	333.4	3.409	1.558
75	Tlaltenango	53.143	52.433	13.599	12.633	3.148	17.175	325.9	3.535	2.178
76	Trancoso	44.004	43.523	12.208	11.797	2.202	17.589	304.8	4.386	3.587
77	Vicente Guerrero	47.408	46.425	12.597	11.849	2.074	17.366	334.4	4.710	3.060
78	Villa de Cos	49.276	48.118	17.678	16.065	3.242	17.354	400.9	4.001	2.194
79	Villa García	47.523	46.857	15.871	15.277	2.268	17.428	381.8	4.685	2.607
80	Villa González Ortega	40.713	39.760	13.212	12.307	2.400	17.721	336.1	4.850	2.483
81	Villa Hidalgo	46.470	45.255	17.271	15.510	3.369	17.486	391.1	4.011	2.232
Valor m	ínimo	28.848	27.843	8.674	6.740	1.962	16.719	196.5	3.018	1.059
Valor m	áximo	61.652	60.117	21.496	19.667	4.622	18.327	507.0	5.736	3.587

Simbología:

- ¹ desviaciones estándar.
- $^{2}~$ factores de frecuencia ($Km_{\scriptscriptstyle o}=$ máximo observado y Km= calculado).
- ³ precipitación máxima probable en 24 horas puntual.
- 4 Po= valor máximo observado de precipitación máxima diaria anual.
- P_{Tr} = precipitación máxima en 24 horas con periodo de retorno (Tr) de 10 000 años.

método de las curvas isoyetas, los polígonos de Thiessen o alguna otra técnica más adecuada.

Para distribuir en otras duraciones la *PMP* en 24 horas puntual o de un área, se puede utilizar el criterio propuesto por Schulz (1976), el cual consiste en trazar en un papel logarítmico una recta paralela a la curva envolvente de valores máximos mundiales, en la duración de 24 horas y el valor de la *PMP*. La curva envolvente es una recta en el papel logarítmico, cuya ecuación es (WMO, 1973; Linsley *et al.*, 1988):

$$P_{MM} = 421.64 \cdot D^{0.475} \tag{2}$$

en donde $P_{\rm MM}$ es la precipitación máxima mundial en milímetros de duración D en horas. Por ejemplo, para obtener la PMP en seis horas, siendo la de 24 horas de 513.0 mm, el procedimiento es el siguiente:

$$\alpha = \frac{513.0}{(24)^{0.475}} = \frac{513.0}{4.52481} \approx 113.375$$

$$PMP_6 = 113.375 \cdot (6)^{0.475} \approx 265.5 \text{ mm}$$

Análisis regional de frecuencia en la zona geográfica de Juchipila

El objetivo fundamental del procesamiento regional de la información de PMD disponible radica en permitir efectuar predicciones en sitios sin información o en aquellos que fueron descartados porque sus registros no eran homogéneos, pero ambos ubicados dentro de tal región o zona geográfica. En general, para poder realizar tales estimaciones en localidades sin datos, se deben cumplir ciertos requisitos estadísticos, por ello el análisis regional de frecuencia (ARF) primero verifica que los registros no sean discordantes entre ellos, después prueba la homogeneidad hidrológica regional V luego predicciones adimensionales, que son válidas dentro de tal área, de manera que después con sólo escalarlas se obtienen las predicciones

buscadas. Como los análisis posteriores se basan en los momentos *L* y sus cocientes, se recomienda consultar a Stedinger *et al.* (1993), Hosking y Wallis (1997), o Campos (2010), para disponer de sus ecuaciones de cálculo.

Para la zona geográfica del estado de Zacatecas que es atravesada por el río Juchipila en la Región Hidrológica núm. 12 Parcial (río Santiago) se detectaron 14 estaciones pluviométricas, para las cuales se les calcularon sus cocientes de momentos L. Las magnitudes de los cocientes citados se tienen en el cuadro 6, en el cual además se expone el valor obtenido para la Discordancia (D_i) de la prueba estadística respectiva (Hosking & Wallis, 1997; Campos, 2010). Se observa que únicamente la estación García de la Cadena es discordante con el resto y por ello se elimina del ARF.

A continuación se probó la homogeneidad hidrológica de la región a través del nuevo Test de Langbein (Fill & Stedinger, 1995; Campos, 2012), encontrándose que sólo las estaciones La Villita y Nochistlán quedan fuera de las curvas de control de la prueba, la primera por arriba y la segunda por abajo. Como tal número de estaciones dispersas es admisible, se acepta que la región analizada es homogénea. En seguida se aplicó el método regional de las estacionesaños (Garros-Berthet, 1994; Campos, 2008) a los 13 registros conjuntados, previamente escalados por su media aritmética. El nuevo registro de valores adimensionales tiene 544 elementos. En el cuadro 7 se han concentrado las predicciones adimensionales obtenidas con los dos modelos probabilísticos ya utilizados y menor EEA.

Ahora, en el cuadro 8 se muestran los momentos L (Hosking & Wallis, 1997; Campos, 2010) de los 13 registros procesados en la región de Juchipila, para obtener sus valores adimensionales con respecto a l_1 y luego los ponderados con respecto a la amplitud de cada registro (n). Habiendo obtenido los momentos L adimensionales ponderados (le_i) , se aplica la distribución GVE, para obtener la predicciones adimensionales con tal método (Campos, 2008); los resultados se muestran en el último renglón

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014 נמס ריטיי דיני

Cuadro 6. Cocientes de momentos L y discordancias de los registros de PMD en dos regiones geográficas del estado de Zacatecas, México.

Estaciones de la región de Juchipila	t	$t_{_3}$	$t_{_4}$	D_i Estaciones de la Región Hidrológica núm. 37		t	$t_{_3}$	$t_{_4}$	D_{i}
1. Excamé	0.15277	0.12216	0.04587	0.63	1. Agua Nueva	0.18368	0.13450	0.16887	0.44
2. García de la Cadena	0.13455	0.01033	0.16733	3.11	2. Calera de Víctor R.	0.16385	0.15786	0.16759	0.97
3. Huanusco	0.14845	0.06257	0.00533	1.28	3. Camacho	0.16171	0.20173	0.12884	1.27
4. Huitzila	0.15598	0.12714	0.06746	0.35	4. Cañitas de Felipe P.	0.22715	0.21471	0.13823	0.85
5. Jalpa	0.11391	0.16296	0.21525	1.19	5. Coapas	0.15869	0.13002	0.13348	0.63
6. Juchipila	0.15428	0.20720	0.16859	0.25	6. Concepción del O.	0.23536	0.15926	0.10614	1.67
7. La Villita	0.11611	0.11242	0.13096	0.72	7. El Salvador	0.19906	0.21614	0.18622	0.80
8. Los Campos	0.19337	0.22281	0.21185	1.68	8. Fresnillo	0.19482	0.12217	0.16558	0.47
9. Mezquital del Oro	0.13810	0.27106	0.21152	1.39	9. Gral. Guadalupe V.	0.19497	0.20525	0.20923	1.35
10. Moyahua de Estrada.	0.13615	0.16536	0.10380	0.41	10. Guadalupe	0.20361	0.06694	0.17305	1.82
11. Nochistlán	0.20191	0.13691	0.09829	1.66	11. Nuevo Mercurio	0.22853	0.26452	0.14582	1.43
12. Teúl de González O.	0.16853	0.15395	0.16774	0.41	12. Pinos	0.18295	0.15597	0.10857	0.16
13. Tlachichila	0.14511	0.21936	0.20266	0.50	13. San Antonio del C.	0.17838	0.10181	0.07163	0.73
14. Tlaltenango	0.14496	0.13778	0.06988	0.43	14. San Benito	0.24664	0.18817	0.06252	1.81
					15. San Jerónimo	0.17574	0.11915	0.09293	0.32
					16. San Tiburcio	0.21435	0.18565	0.11888	0.47
					17. Trancoso	0.15971	-0.03596	0.09517	3.05
					18. Villa de Cos	0.20161	0.15431	0.12490	0.10
					19. Villa González O.	0.18662	0.13979	0.05099	1.37
					20. Villa Hidalgo	0.20729	0.15366	0.15673	0.29

Cuadro 7. Predicciones adimensionales obtenidas con los métodos regionales indicados en la región geográfica de Juchipila del estado de Zacatecas, México.

Método regional, distribución de	Periodos de retorno en años							
probabilidades y método de ajuste	100	500	1 000	5 000	10 000			
Estaciones-años. LP3. Mo. dominio real	1.797	2.078	2.196	2.469	2.586			
Estaciones-años. GVE. Sextiles.	1.820	2.101	2.215	2.464	2.565			
Mo. Ponderados. GVE. Momentos L.	1.843	2.170	2.309	2.625	2.760			

del cuadro 7. Se observa que estas últimas predicciones adimensionales son las mayores y por seguridad son las adoptadas.

Por último, en el cuadro 9 se muestran las predicciones estimadas con el método regional, para las siguientes tres estaciones pluviométricas: (1) García de la Cadena, la cual fue eliminada con la prueba de discordancias; (2) Tecomate, que no se incluyó a propósito desde el inicio del ARF, y (3) el sitio de Tepechitlán, que no cuenta con estación pluviométrica, pero que es una ciudad importante. En los tres

casos, la magnitud media de la PMD se estimó con base en los valores observados cercanos. También se puede aplicar una ponderación en función de la distancia de cada estación pluviométrica al sitio bajo análisis.

Para fines de comparación entre las predicciones históricas (H) y las regionales (R) se estimó el error relativo (ER) definido como:

$$ER = \frac{\left(PMD_{Tr}\right)_{\text{regional}} - \left(PMD_{Tr}\right)_{\text{histórico}}}{\left(PMD_{Tr}\right)_{\text{histórico}}} 100 \qquad (3)$$

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014

Cuadro 8. Ponderación de los momentos *L* en los 13 registros de precipitación máxima diaria anual de la región geográfica de Juchipila del estado de Zacatecas, México.

Estación	n	<i>l</i> ₁	l ₂	l ₃	le ₂	le ₃	le ₂	le ₃
1. Excamé	66	52.759	8.060	0.985	0.1528	0.0187	0.0185	0.0023
2. Huanusco	36	48.131	7.145	0.447	0.1484	0.0093	0.0098	0.0006
3. Huitzila	25	61.652	9.617	1.223	0.1560	0.0198	0.0072	0.0009
4. Jalpa	34	50.335	5.734	0.934	0.1139	0.0186	0.0071	0.0012
5. Juchipila	59	46.547	7.181	1.488	0.1543	0.0320	0.0167	0.0035
6. La Villita	53	53.868	6.255	0.703	0.1161	0.0131	0.0113	0.0013
7. Los Campos	30	48.907	9.457	2.107	0.1934	0.0431	0.0107	0.0024
8. Mezquital del Oro	27	59.011	8.149	2.209	0.1381	0.0374	0.0069	0.0019
9. Moyahua de Estrada	31	50.884	6.928	1.146	0.1362	0.0225	0.0078	0.0013
10. Nochistlán	58	47.986	9.689	1.327	0.2019	0.0277	0.0215	0.0030
11. Teúl de González O.	44	51.566	8.691	1.338	0.1685	0.0259	0.0136	0.0021
12. Tlachichila	25	54.680	7.935	1.741	0.1451	0.0318	0.0067	0.0015
13. Tlaltenango	56	53.143	7.704	1.061	0.1450	0.0200	0.0149	0.0021
Sumas y promedios	544	52.267	-	-	0.1493	0.0246	0.1493	0.0241

Cuadro 9. Contrastes entre las predicciones históricas y las procedentes de los métodos regionales en dos registros de la región de Juchipila, Zacatecas, México.

Estadón	TP*	Periodos de retorno en años						
Estación	Ir	100	500	1 000	5 000	10 000		
García de la Cadena	Н	88.8	94.0	95.7	98.5	99.4		
$\overline{X}_n = 57.700 \text{ mm}$	R	106.3	125.2	133.2	151.5	159.3		
	ER	19.7	33.2	39.2	53.8	60.3		
Tecomate	Н	78.0	87.3	90.8	98.1	100.8		
$\overline{X}_n = 45.962 \text{ mm}$	R	84.7	99.7	106.1	120.7	126.9		
	ER	8.6	14.2	16.9	23.0	25.9		
Tepechitlán $\overline{X}_n = 53 \text{ mm}$	R	97.7	115.0	122.4	139.1	146.3		

^{*} tipo de predicción: H = histórica; R = regional; ER = error relativo.

en donde el error relativo se expresa en porcentaje y presenta un valor negativo cuando la lluvia estimada con predicciones adimensionales regionales resultó menor que la calculada probabilísticamente o histórica; en cambio, cuando conduzca a un valor positivo indica que la predicción estimada fue superior a la del registro. Para el registro discordante de la estación García de la Cadena, los *ER* variaron del 20 al 60% por exceso con respecto a las predicciones históricas, que por supuesto se consideran erróneas. En cambio, en Tecomate, los *ER* únicamente fluctuaron

del 9 al 26%, también por exceso, por lo cual las predicciones de los métodos regionales se consideran bastante aproximadas.

Análisis regional de frecuencia en la Región Hidrológica núm. 37

El otro ARF realizado incluyó las 20 estaciones pluviométricas del estado de Zacatecas que pertenecen a la Región Hidrológica núm. 37 (El Salado). Se siguió un procedimiento idéntico al descrito en el inciso anterior, por ello en el cuadro 6 se muestran los cocientes de momentos

L y sus respectivas discordancias (D_i); se observa que resultó discordante solamente el registro de la estación Trancoso. La aplicación de la versión corregida del Test de Langbein encontró que tal región es homogénea, pues ninguna de las 19 estaciones pluviométricas que la integran quedó fuera de sus curvas de control.

Ahora en el cuadro 10 se tienen las predicciones adimensionales obtenidas con el método regional de las estaciones-año, según los modelos probabilísticos LP3 y GVE de menor *EEA*, con un registro conjunto de 749 elementos escalados con la media aritmética. En el cuadro 11 se presentan los momentos *L* de los 19 registros de tal región y su respectivo escalamiento y ponderación.

El ajuste de la distribución GVE con el método de los momentos L ponderados condujo a las predicciones adimensionales que se tienen en el renglón final del cuadro 10. Tales predicciones resultaron las más elevadas y por seguridad de las estimaciones regionales son las adoptadas. Por lo anterior, en el cuadro 12 se presentan las predicciones estimadas regionalmente en las tres estaciones pluviométricas de la Región Hidrológica núm. 37, que fueron encontradas no homogéneas y también la discordante. En todas estas estaciones, la magnitud de la media de la PMD se estimó con base en los valores cercanos observados.

El valor del parámetro de forma (*k*) de la distribución GVE, calculado en los dos ARF realizados, en la zona geográfica de Juchipila y en la Región Hidrológica núm. 37, con los métodos de las estaciones-años y de momentos *L* ponderados, siempre resultó cercano a cero y positivo, entonces define una distribución Weibull, por lo cual no se aproxima al encontrado como valor máximo mundial por Koutsoyiannis (2004) de -0.150, es decir, distribución Fréchet, al procesar conjuntamente 169 registros de *PMD* de Europa y Estados Unidos, con un número de datos variando de 100 a 154, para un total de 18 065 estaciones-años.

Conclusiones

En este estudio de la precipitación máxima diaria anual (*PMD*) del estado de Zacatecas, México, quedó manifiesta la importancia de las pruebas estadísticas específicas que detectan componentes determinísticas en las series anuales de máximos, ya que de los 98 registros analizados con más de 25 datos (ver cuadro 1), 17 resultaron no homogéneos y por lo tanto no susceptibles de procesamiento probabilístico para obtener sus predicciones requeridas en el dimensionamiento hidrológico.

Este nuevo estudio probabilístico de la PMD del estado de Zacatecas, que utilizó registros o series anuales de máximos, que en promedio deben tener de 30 a 39 años más, en relación con el elaborado por la extinta Secretaría de Recursos Hidráulicos (SRH), con datos hasta 1974, sólo mostró predicciones mayores en ciertas estaciones, como Río Grande, El Cazadero, Sain Alto, Nuevo Mercurio, Villa de Cos y Loreto. En otras estaciones, sus predicciones resultaron casi idénticas, como es el caso de El Arenal, Concepción del Oro, San Tiburcio, Cañitas de Felipe Pescador, Fresnillo, Boca del Tesorero y Presa Palomas. Pero en la mayoría (ver cuadro 4), las nuevas predicciones fueron sensiblemente menores, por ello se concluyó que los mapas de curvas isomáximas de la SRH, publicados en 1976, siguen vigentes para el estado de Zacatecas, México, y se presentan en las figuras 5, 6 y 7.

Los resultados del método estadístico de Hershfield para estimar la precipitación máxima probable en 24 horas puntual (PMP), concentrados en el cuadro 5, indican gran variabilidad en su magnitud desde valores cercanos a 300 milímetros en las regiones hidrológicas 36 y 37, hasta las magnitudes superiores a los 400 milímetros, comunes de la Región Hidrológica 12. Respecto a los cocientes, en cada estación pluviométrica, entre la PMP y la precipitación máxima diaria observada (Po) del registro y la asociada con el periodo de retorno de 10 000 años ($P_{\rm Tr}$), se puede decir que resultaron bastante estables o similares, ya

Ciencias del Agua, vol. V, núm. 5, septiembre-octubre de 2014

Cuadro 10. Predicciones adimensionales obtenidas con los métodos regionales indicados en la Región Hidrológica núm. 37 (El Salado) del estado de Zacatecas, México.

Método regional, distribución de	Periodos de retorno en años							
probabilidades y método de ajuste	100	500	1 000	5 000	10 000			
Estaciones-años. LP3. Mo. dominio logarítmico	2.050	2.430	2.591	2.961	3.120			
Estaciones-años. GVE. Sextiles.	2.100	2.517	2.692	3.090	3.258			
Mo. Ponderados. GVE. Momentos L.	2.108	2.542	2.726	3.148	3.327			

Cuadro 11. Ponderación de los momentos L en los 19 registros de precipitación máxima diaria anual de la Región Hidrológica núm. 37 (El Salado) del estado de Zacatecas, México.

Estación	п	$l_{_1}$	l ₂	l ₃	le ₂	le ₃	le ₂	le ₃
1. Agua Nueva	43	36.316	6.671	0.897	0.1837	0.0247	0.0105	0.0014
2. Calera de Víctor R.	51	40.998	6.718	1.060	0.1639	0.0259	0.0112	0.0018
3. Camacho	31	28.848	4.665	0.941	0.1617	0.0326	0.0067	0.0013
4. Cañitas de Felipe P.	37	37.476	8.512	1.828	0.2271	0.0488	0.0112	0.0024
5. Coapas	41	41.634	6.607	0.859	0.1587	0.0206	0.0087	0.0011
6. Concepción del O.	47	37.300	8.779	1.398	0.2354	0.0375	0.0148	0.0024
7. El Salvador	25	46.812	9.318	2.014	0.1991	0.0430	0.0066	0.0014
8. Fresnillo	54	43.900	8.553	1.045	0.1948	0.0238	0.0140	0.0017
9. Gral. Guadalupe V.	45	43.460	8.473	1.739	0.1950	0.0400	0.0117	0.0024
10. Guadalupe	31	43.129	8.782	0.588	0.2036	0.0136	0.0084	0.0006
11. Nuevo Mercurio	38	35.263	8.059	2.132	0.2285	0.0605	0.0116	0.0031
12. Pinos	55	48.876	8.942	1.395	0.1830	0.0285	0.0134	0.0021
13. San Antonio del C.	37	44.905	8.010	0.816	0.1784	0.0182	0.0088	0.0009
14. San Benito	28	46.175	11.389	2.143	0.2466	0.0464	0.0092	0.0017
15. San Jerónimo	30	40.007	7.031	0.838	0.1757	0.0209	0.0070	0.0008
16. San Tiburcio	37	40.135	8.603	1.597	0.2144	0.0398	0.0106	0.0020
17. Villa de Cos	45	49.276	9.935	1.533	0.2016	0.0311	0.0121	0.0019
18. Villa González O.	31	40.713	7.598	1.062	0.1866	0.0261	0.0077	0.0011
19. Villa Hidalgo	43	46.470	9.633	1.480	0.2073	0.0318	0.0119	0.0018
Sumas y promedios	749	39.563	-	-	0.1971	0.0323	0.1961	0.0319

Cuadro 12. Estimación de predicciones en las estaciones pluviométricas indicadas de la Región Hidrológica núm. 37 (El Salado) del estado de Zacatecas, México.

F (''	Periodos de retorno en años									
Estación	100	500	1 000	5 000	10 000					
Gruñidora ($\overline{X}_n = 38 \text{ mm}$)	80.1	96.6	103.6	119.6	126.4					
El Rusio ($\overline{X}_n = 43 \text{ mm}$)	90.6	109.3	117.2	135.4	143.1					
Zacatecas ($\overline{X}_n = 46 \text{ mm}$)	97.0	116.9	125.4	144.8	153.0					
Trancoso ($\overline{X}_n = 44 \text{ mm}$)	92.8	111.8	119.9	138.5	146.4					

que fluctúan poco y sus valores centrales son bastante parecidos (ver cuadro 5), pudiéndose recomendar 4.20 para el primer cociente y 2.20 para el segundo.

En relación con los análisis regionales de frecuencia, éstos permiten verificar o rechazar las predicciones obtenidas con registros cortos de PMD, así como obtener las de registros no susceptibles de procesamiento probabilístico por ser no homogéneos y, lo más relevante, de sitios o localidades donde no hay información pluviométrica. Trabajando por subregiones hidrológicas o zonas geográficas, lo más probable es que las pruebas de homogeneidad regional verifiquen la selección de estaciones pluviométricas realizada y que las predicciones regionales resulten bastante aproximadas, como lo mostraron los dos análisis realizados en el estado de Zacatecas: uno para la zona del río Juchipila, en la Región Hidrológica núm. 12 Parcial (río Santiago) y el otro para la Región Hidrológica núm. 37 (El Salado).

Por último, se recomienda llevar a cabo este tipo de estudios de la *PMD* en otras regiones hidrológicas o estados del país, ahora que existen registros amplios y que los métodos regionales han demostrado su utilidad, para realizar estimaciones o predicciones confiables en sitios sin información pluviométrica, las cuales son la base de los métodos hidrológicos de obtención de las crecientes de diseño, en localidades sin datos hidrométricos.

Agradecimientos

Se agradece al Ing. Humberto Abelardo Díaz Valdez, jefe de Proyecto de Hidrometeorología de la Dirección Local Zacatecas de la Conagua, haber proporcionado al autor el archivo en Excel correspondiente a las 134 estaciones pluviométricas con registro de precipitación máxima diaria anual (*PMD*), así como la verificación o corrección de todos los valores detectados como anómalos, por ser superiores a 100 milímetros en los 98 registros procesados de *PMD*.

El M. en I. Juan Antonio Araiza Rodríguez, profesor investigador de la Facultad de Ingeniería de la Universidad Autónoma de San Luis Potosí, realizó la integración inicial de los registros por procesar, revisando en cada

año incompleto los datos de los meses disponibles para contrastarlos contra su media mensual; en caso de ser mayores eran seleccionados como valores potenciales o probables de ser seleccionados para el año incompleto. En una inspección del registro integrado se definió qué valores potenciales de años incompletos serían utilizados, comúnmente por ser superiores a los mínimos de los años completos.

Referencias

- Bobée, B. (1975). The Log-Pearson Type 3 Distribution and its Application to Hydrology. *Water Resources Research*, 11(5), 681-689.
- Buishand, T. A. (1982). Some Methods for Testing the Homogeneity of Rainfall Records. *Journal of Hydrology*, 58, 11-27.
- Campos-Aranda, D. F. (1998). Estimación estadística de la precipitación máxima probable en San Luis Potosí. Ingeniería Hidráulica en México, 13(3), 45-66.
- Campos-Aranda, D. F. (2008). Ajuste regional de la distribución *GVE* en 34 estaciones pluviométricas de la zona Huasteca de San Luis Potosí. *Agrociencia*, 42(1), 57-70
- Campos-Aranda, D. F. (2010). Verificación de la homogeneidad regional mediante tres pruebas estadísticas. Tecnología y Ciencias del Agua, 1(4), 157-165.
- Campos-Aranda, D. F. (2012). Descripción y aplicación de la versión corregida del Test de Langbein para verificar homogeneidad regional. *Ingeniería. Investigación y Tecnología*, 13(4), 411-416.
- Clarke, R. T. (1973). Mathematical Models in Hydrology. Chapter 5: The Estimation of Floods with Given Return Period (pp. 130-146). Irrigation and Drainage Paper 19. Rome: FAO.
- Fill, H. D., & Stedinger, J. R. (1995). Homogeneity Test Based Upon Gumbel Distribution and a Critical Appraisal of Dalrymple's Test. *Journal of Hydrology*, 166, pp. 81-105.
- Garros-Berthet, H. (1994). Station-Year Approach: Tool for Estimation of Design Floods. *Journal of Water Resources Planning and Management*, 120(2), 135-160.
- Gupta, R. S. (2008). *Hydrology and Hydraulic Systems*. Chapter8: Computation of Extreme Flows (pp. 427-482). Illinois: Waveland Press, Inc.
- Hershfield, D. M. (1961). Estimating the Probable Maximum Precipitation. *Journal of Hydraulics Division*, 87(HY5), pp. 99-106.
- Hershfield, D. M. (1965). Method for Estimating Probable Maximum Rainfall. *Journal of American Water Works* Association, 57, 965-972.
- Hosking, J. R., & Wallis, J. R. (1997). Regional Frequency Analysis. An Approach Based on L-Moments. Chapter 3: Screening the Data (pp. 44-53) and Appendix: L-moments

- for some specific distributions (pp. 191-209). Cambridge: Cambridge University Press.
- Kite, G. W. (1977). Frequency and Risk Analyses in Hydrology. Chapter 12: Comparison of Frequency Distributions (pp. 156-168). Fort Collins, USA: Water Resources Publications.
- Kottegoda, N. T. (1980). Stochastic Water Resources Technology. Chapter 2: Analysis of Hydrologic Time Series (pp. 20-66). London: The MacMillan Press, Ltd.
- Koutsoyiannis, D. (2004). Statistics of Extremes and Estimation of Extremes Rainfall: II. Empirical Investigation of Long Rainfall Records. *Hydrological Sciences Journal*, 49(4), 591-610.
- Linsley, R. K., Kohler, M. A., & Paulhus, J. L. (1988). Hydrology for Engineers. Chapter 3: Precipitation (pp. 46-93) and Chapter 14: Stochastic Hydrology (pp. 374-397). London: McGraw-Hill Book Co., SI Metric Edition.
- Mansell, M. G. (2003). Rural and Urban Hydrology. Chapter 8: Analysis and Prediction of Flows (pp. 319-354). London: Thomas Telford Publishing.
- Ostle, B., & Mensing, R. W. (1975). *Statistics in Research*. Chapter 7: Regression Analysis (pp. 165-236). Third edition. Ames, USA: Iowa State University Press.
- Ruiz-Maya, L. (1977). Métodos estadísticos de investigación. Capítulo 9: Condiciones paramétricas del análisis de varianza (pp. 233-249). Madrid: Instituto Nacional de Estadística.
- Schulz, E. F. (1976). *Problems in Applied Hydrology*. Section Ten: Applications to Engineering Problems (pp. 459-491). Fort Collins, USA: Water Resources Publications.
- SRH (1976). Boletín de Tormentas Máximas Observadas y Probables en México en 24 horas (hasta 1974). México, DF: Secretaría de Recursos Hidráulicos, Subsecretaría de Planeación. Dirección general de Estudios. Subdirección de Hidrología.
- Shaw, E. M., Beven, K. J., Chappell, N. A., & Lamb, R. (2011). *Hydrology in Practice*. Chapter 9: Precipitation Analysis

- (pp. 155-194) and Chapter 13: Estimating Floods and Low Flows in the UK (pp. 322-350). Fourth edition. London: Spon Press.
- Smith, J. A. (1993). Precipitation. Chapter 3. In D. R. Maidment (Ed.). *Handbook of Hydrology* (pp. 3.1-3.47). New York: McGraw-Hill, Inc.
- Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993).

 Frequency Analysis of Extreme Events. Chapter 18. In D.

 R. Maidment (Ed.). *Handbook of Hydrology* (pp. 18.1-18.66).

 New York: McGraw-Hill, Inc.
- WRC (1977). Guidelines for Determining Flood Flow Frequency.

 Bulletin # 17 A of the Hydrology Committee. Revised Edition. Washington, DC: Water Resources Council.
- Weiss, L. L. (1964). Ratio of True to Fixed-Interval Maximum Rainfall. Journal of Hydraulics Division, 90(HY1), 77-82.
- WMO (1971). Climatic Change. Annexed III: Standard Tests of Significance to be Recommended in Routine Analysis of Climatic Fluctuations (pp. 58-71). Technical Note No. 79, WMO-No. 195. Geneva: World Meteorological Organization, Secretariat of the WMO.
- WMO (1973). Manual for Estimation of Probable Maximum Precipitation. Chapter 4: Statistical Estimates (pp. 95-107). Operational Hydrology Report No. 1. WMO-332. Geneva: World Meteorological Organization.

Dirección del autor

Dr. Daniel Francisco Campos-Aranda

Profesor jubilado de la Universidad Autónoma de San Luis Potosí, México Genaro Codina 240 Colonia Jardines del Estadio 78280 San Luis Potosí, San Luis Potosí, México Teléfono: +52 (444) 8151 431 campos_aranda@hotmail.com