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Abstract

Precipitation datasets obtained from satellites can be useful in regions where
rainfall is very heterogeneous, such as Peruvian Andes, which is usually poorly
monitored. The objective of this study is to characterize the main hydrological
variables and to understand the potential of precipitation estimates based on
satellite datasets for hydrological modeling. This article evaluates the
usefulness of estimated precipitation from observed (rain gauges) and
satellites datasets (TMPA V7 and TMPA RT products of the TRMM satellite) as
input in GR2M hydrological model to simulate monthly streamflows between
2011-2015 for the Ilave River basin located in the Peruvian Altiplano. The
results from observational datasets indicate a deficit of streamflows due to
decreased rainfall during wet season (~ 50%), whereas evapotranspiration is
greater during dry season (~ 24%). Our results show that TMPA V7 has a
higher similarity with respect to precipitation observed during wet season.
Results also indicate that GR2M perform better with observed inputs and when
TMPA-V7 precipitation datasets are used, while the opposite occurs with TMPA
RT dataset. This poor performance of the hydrological model may be due to
inadequate rainfall estimation in the water balance.

Keywords: Precipitation datasets; Hydrological modeling; Andes; TRMM;
Satellite.

Introduction

In recent decades, global and quasi-global datasets of satellite-based
precipitation, terrestrial observations and general circulation models have been
developed at different temporal resolutions (Huffman et al., 2007).
Precipitation is an important component of the water cycle and a key input for
hydrological modeling applications. The reliable quantification of the spatio-
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temporal distribution of rainfall is fundamental to the analysis of extreme
hydrological phenomena, such as droughts and floods, in real time or almost
real time. However, measurement networks (meteorological and hydrological)
in Altiplano regions may be scarce or even non-existent. In addition, the
presence of the Andes contributes to the high spatial variability of rainfall
(Espinoza et al., 2009), where large amounts of rainfall can precipitate in a few
days, increasing the risk of soil instability, landslides and floods (Coscarelli &
Caloiero, 2012; Zubieta & Saavedra, 2013; Zubieta, Saavedra, Silva, &
Giraldez, 2017a). Satellite-based precipitation products have increasingly
facilitated rainfall estimation in much of the world and have become a
complementary alternative for hydrometeorological applications and climate
studies in unmonitored regions. These include data from the Tropical Rainfall
Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data
(Huffman, Adler, Bolvin, & Nelkin, 2010). TRMM was a mission initiated in 1997
by the National Space Development Agency of Japan (JAXA) and the National
Aeronautics and Space Administration (NASA) of the United States. It came to
an end on April 8, 2015, as part of its deactivation, having exhausted its
energy reserves (https://pmm.nasa.gov/trmm/mission-end). Recently, the
usefulness of these data in Andean-Amazon basins has been evaluated mainly
by comparing estimated and observed data for both rainfall and streamflow,
noting that precipitation data from satellites can be used as input for modeling
flows in watersheds (Zulkafli et al., 2014; Zubieta, Getirana, Espinoza, &
Lavado, 2015; Milewski, Elikadri, & Durham, 2015; Zubieta, Getirana,
Espinoza, Lavado-Casimiro, & Aragon, 2017b). Zulkafli et al. (2014)
documents that the performance of hydrological modeling tends mainly to be
unsatisfactory for the Andean-Amazonian regions of northern Peru and
southern Ecuador. However, better results are obtained for the Andean-
Amazonian regions of southern Peru, which are mainly associated with
adequate rainfall estimates from satellite (Zubieta et al., 2015).

To assess the usefulness of satellite-based precipitation data, it is necessary to
investigate temporal variations in rainfall and its impacts on the hydrological
cycle. The variability of the streamflows in Andean basins is consistent with the
variability of rainfall on a seasonal and interannual scale. This occurs especially
in the Peruvian Andes, which is characterized by different rainfall regimes, due
to its latitudinal extension and the presence of the mountain range (Espinoza
et al., 2009). For example, rainfall in the basin of the Ramis River in the
Peruvian Altiplano shows negative trends of 0.70mm / year, while maximum
temperatures show significant positive trends of 0.04°C / year, on average.
Likewise, the minimum temperatures at the basin level present an increase of
0.0004°C / year (Belizario, 2015). On the other hand, in recent years, the
Altiplano region has suffered serious extreme hydrological events, such as
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intense droughts in 2008 and 2010 (ANA, 2010) and floods in 2012 (RPP
Noticias, 2012).

The main objective of this study is to evaluate the capacity of TRMM products
TMPA V7 and TMPA RT (real time), for satellite-based precipitation, to
represent useful precipitation fields for hydrological modeling of the Ilave River
basin (IRB). The IRB is located in the Andes of southern Peru, in the northern
region of the Altiplano (69.4W-70.38W; 17.14S 15.8S), with drainage area of 7
790 km?, altitudes ranging from 3 805 to 5 400 meters and an average altitude
of 4 300 masl (Figure 1a-b). The average annual rainfall throughout the IRB is
between 494 and 888 mm / year, and it has an average flow of 32 m®/ s. The
amplitude of the annual precipitation cycle is relatively large, with maximum
values that occur between December and February, and minimum values
between June and August.
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Figure 1. a) Location of weather stations; b) location of the Ilave River basin, IRB.

A ground-based precipitation dataset was used for comparison with the
satellite estimates. Each precipitation dataset (observed and satellite) was
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used as input for the GR2M model (Niel, Paturel, & Servat, 2003), which is
based on the GR2M model (Edijatno & Michel, 1989; Kabouya, 1990), and
adapted by Makhlouf & Michel (1994). Streamflow simulations were compared
to observed flows. GR2M has been used to simulate the hydrological behavior
of numerous Andean-Amazon basins in Peru (Lavado, Labat, Guyot, Ronchail,
& Ordofiez 2009; Lavado, Labat, Guyot, & Ardoin-Bardin, 2011; Vera & Felipe,
2011). Recently, Lujano, Felipe, Lujano and Quispe (2015) showed that TMPA
data are feasible to use as input for the GR2M model for the Ramis River basin,
which is located northwest of the IRB.

Data used

A daily rainfall dataset was collected from 11 rain stations belonging to the
National Meteorology and Hydrology Service of PERU (SENAMHI). The data
period selected for the hydrological analysis was between 2010 and 2015.
However, to ensure the maximum availability of rainfall and hydrometric data,
a common period (2011-2015) was selected (Figure 1b, Table 1). To evaluate
its quality, this database was composed of a total of 10 rainfall stations on a
monthly basis, the regional vector method (RVM) was applied, which uses the
concept of extended precipitation averaged over the study period (Hiez, 1977;
Brunet-Moret, 1979; Vauchel, 2006).

Table 1. General characteristics of weather stations: latitude (Lat), longitude (Long),
altitude (Alt), annual rainfall (rain), maximum temperature (T max), minimum
temperature (T min) and the percentage of data availability for the period 2011-2015.

Sation Rain | T T | Availability

Name Lat Long Alt max min of data (%)
Capazo -17.19 -69.74 4 530 464 13.6 -6.3 99.8
Mazo Cruz -16.74 -69.72 4 003 564 17.5 -5.0 99.9
Laraqueri -16.15 -70.07 3900 788 16.7 -1.6 99.8
Los Uros -15.82 -69.94 3808 810 15.8 3.9 99.9
Rincon La
Cruz -15.99 -69.81 3935 872 15.3 2.7 99.
Ilave -16.07 -69.66 3871 647 15.3 1.5 99.9

88

Tecnologia y ciencias del agua, 9(5), 85-105, DOI:10.24850/j-tyca-2018-05-04



Tecnologia y

CienciaszAgua

Callacame -16.57 -69.32 3 951 413 14.0 1.0 99.8
Pizacoma -16.91 -69.37 3930 583 17.0 -0.9 99.9
Ichuna -16.13 -70.55 3 800 595 20.1 2.5 99.9
Calacoa -16.74 -70.68 3 260 386 25.0 4 99.8

The least squares method was applied to determine an annual regional rainfall
index, Zi, and extended average precipitation. For this purpose, this calculation
can be made by minimizing the sum of Equation (1), where Pjj stands for the
annual rainfall in the station j , Pj is the average precipitation extended i/ is the
year index, j is the index of the station, N the number of years, and M the
number of stations . Finally, the Zi data series is called the annual regional
vector of rainfall indices.

Thus, the climate zone was considered the same as the IRB with the same
rainfall regime. It is assumed that the annual rainfall in the basin’s stations
shows the proportionality between the stations.
TRMM provides data derived from its products, which were evaluated in this
study. One product used was the TMPA 3B42 version 7 was used, obtained
both in real time and near real time from a set of data from many sensors on
precipitation satellites (TMPA 3B42 data is available at
https://pmm.nasa.gov/data-access/downloads/trmm).

TMPA shows the most successful experience, since its processing has been
improved by using data having a better scale than other data sources, which is
essential to creating spatial-temporal averages that are appropriate for the
user's application (Huffman et al., 2010). The other set of data was taken from
TMPA-RT precipitation estimates. Unlike TMPA V7, these data do not include
calibration measurements of rain stations, which are incorporated more than
one month after the satellite data.

Both TMPA V7 and TMPA RT provide precipitation data with spatial resolution a
of 0.25 ° * 0.25 °© and a temporal resolution of 3 hours. Daily rainfall data was
collected from 11 rain stations belonging to the National Meteorology and
Hydrology Service (SENAMHI). The data period selected for the hydrological
analysis was between 2010 and 2015. However, to ensure the maximum
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availability of rainfall and hydrometric data, we selected a common period
(2011-2015) (Figure 1b, Table 1).

To evaluate its quality, this database was composed of a total of 10 rainfall
stations on a monthly basis. The regional vector method (RVM) was applied,
which uses the concept of average precipitation extended to the study period
(Hiez, 1977; Brunet-Moret, 1979; Vauchel, 2006).

Methodology

The GR2M model (Niel et al., 2003) is a lumped hydrological model that
requires monthly average information related to climatic variables for a
drainage area (Figure 1a). Due to the reduced number of rainfall stations (10)
and some unmonitored regions in the basin, precipitation data was
interpolated, at the same resolution of the TMPA (0.25 © * 0.25 °©) by means of
the kriging method, considering the relationship between the stations located
inside and outside the basin. The method selected in this study is the ordinary
Kriging, which consists of quantifying the assumption that nearby
measurements tend to be more similar than those that are located further
away. Detailed information about the Kriging interpolation method can be
found in Lichtenstern (2013). Finally, the average precipitation values for each
month and for the entire basin in the 2010-2015 period were determined. Due
to the availability of maximum and minimum temperature data, the
evapotranspiration variable (ETP) was estimated with the Hargreaves &
Samani model (1985). This calculation is shown in Equation (2):

ETP = 0.0023 (T;, + 17.8) (Trmax — Tminy"" * Ra (2)

where ETP is evapotranspiration (mm / day), T,, is mean temperature (° C),
Tmare 1S Maximum temperature (° C), T, iS minimum temperature (° C) and
Ra is extraterrestrial radiation (mm / day). This method provides a suitable
approximation with respect to data obtained by lysimeters in the northern
Altiplano regions (higher humidity), similar to those obtained by the FAO
Penman-Monteith equation (Garcia, Raes, Allen, & Herbas, 2004). In fact,
studies carried out in the Bolivian Altiplano using pasture varieties (above 3
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000 masl) as a reference crop suggest that the Penman-Monteith and
Hargreaves-Samani methods sufficiently agree with data from lysimeters
(Garcia, Raes, & Jacobsen, 2003; Garcia et al., 2004; Vacher, Imana, &
Canqui, 1994). However, Hargreaves-Samani (1985) tends to slightly
underestimate data observed in the southern region of the Altiplano, where the
aerodynamic factors that affect evapotranspiration are more important than in
the northern Altiplano, due to the plains and greater aridity (Garcia et al.,
2004).

The conceptual layout of the GR2M model is shown in Figure 2, where the
parameters of the model are noted as X1 (maximum storage capacity of the
reservoir in mm) and X2 (groundwater exchange coefficient, dimensionless).
The GR2M model’s parameters are described as follows (Niel et al., 2003): X1
parameter is adjusted in order to multiply, in the same proportion, rainfall and
evapotranspiration rates ranging from 0 to 1; o is a parameter multiplied by
effective rainfall, (Pe) corresponds to direct flow while (1 -a.), Pe flow
discharges into the gravity drainage tank; finally, the discharge of the second
tank is defined with parameter X2 with ranges from 0 to 1.

The model is based on the transformation of precipitation-runoff through two
functions: production and transfer. The GR2M model is a model with two
reservoirs, where the production function is organized around a reservoir called
reservoir-soil, and the transfer function is governed by the second reservoir
called gravitational water reservoir, where the contribution is instantaneous at
the beginning of the time step, then the reservoir empties gradually. The level
of this reservoir determines the flow rate that can be released (Figure 2).
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Figure 2. GR2M Model (Mouelhi, 2003).
Source: Cemagref (www.cenagref.fr).

The input (P) and output (ETP) variables of the reservoir-soil (production
stored-maximum capacity X1) are calculated based on the storage of the
production reservoir (S). A portion of precipitation P1 refers to the difference
between P and the precipitation that enters the soil, and another portion, P2,
refers to the amount of water that contributes to underground exchange. The
sum of P1 and P2 corresponds to the effective precipitation, P3, that enters the
gravitational water reservoir (R) (maximum capacity set at 60 mm). The
underground exchange (R2) is included in the X2 model (Figure 2). Finally as a
result for the output flow, the gravitational water reservoir is released
according to a quadratic function. The optimization of the model responds
mainly to two parameters: X1, capacity of the reservoir-soil in millimeters, and
X2, coefficient of underground exchange (dimensionless). For this, a previous
manual calibration was carried out, to finally use the Excel SOLVER tool.

To evaluate the performance of the model, the following objective functions
were used: Nash Sutcliffe Coefficient (NS), difference between calculated and
observed volumes by the volume error (AV) and coefficient of determination
shown as (pg,,, 0., ) IN Equations 11, 12 and 13:
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Z?ﬁl(Qobs(t) = Qcal (t))z

NS =1-=£2 S
thl(Qobs(t) - Qobs)2

(11)

— Z(Qobs (t)) - Z(Qobs(t))

av Z (Qobs (t))

(12)

0,
Qobs Qcal
_ —==t (13
Pobs Qcar = OQobs -9 Qcar ( )

Where @, is the observed flow, Q. is the estimated flow, gy, 0., iS the
covariance between Q,,s and Q.,, and, finally o, ,  and o,_, represent the
standard deviation of the variables, respectively.

Results and discussion

In average terms, the visual analysis of the estimated evapotranspiration
regime for the period 2011-2015 did not show significant variations during the
wet season (~ 166 mm, December-February), however, there was an
approximate increase from 64 mm to 80 mm during the dry season. As a result
of the water balance, this increase is associated with the reduction in
precipitation identified throughout the study period (~ 50%) (see Figure 3a).
The average annual precipitation in the IRB indicates that TMPA V7 (836.4
mm) and TMPA RT (1022.5 mm) overestimated observed data (688.0 mm) by
21.6% and 48.6%, respectively.

The analysis of monthly precipitation in the IRB shows that the TMPA V7 data
were more realistic in relation to observed data when a high coefficient of
determination between them was identified (r2 = 0.86) and lower standard
error (EME = 25 mm) (Figure 3b). However, TMPA V7 shows differences with
respect to observed data for rainfall estimates above 50 mm / month.
Likewise, TMPA RT dataset shows greater differences than TMPA V7 for
estimates above 50mm / month, despite having an acceptable coefficient of
determination (r2 = 0.76) and a higher error (EME = 33.1 mm) (Figure 3c) .
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For a temporal analysis of rainfall, average monthly rainfall was calculated for
each data set (PLU, TMPA V7, TMPA RT). The analysis corroborates that the
TMPA V7 estimates best approximate data observed during the wet season
(December-March) (Figure 3d). However, TMPA V7 shows a tendency to
overestimate rainfall observed during the dry season by ~ 22 mm (May-
September). On the other hand, TMPA RT data show a tendency to
overestimate data observed predominantly throughout the year.
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Figure 3. a) Comparison between evapotranspiration and observed rainfall; b-c)

dispersion diagrams based on the rainfall products TMPA V7 and TMPA RT in relation to
observed rainfall (PO); d) average monthly rainfall for each rain product.
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The differences identified between the satellite estimates and observed rainfall
data may be associated with observational variations and/or data from sensors
providing data input to the algorithm used to estimate satellite precipitation
(Huffman et al., 2007). In fact, similar results were found in the Ramis River
basin in the Peruvian Altiplano (Lujano et al., 2015) and other regions in the
Andes of Peru and Ecuador (Zulkafli et al., 2014; Zubieta et al., 2015).

For the calibration process of the model, the selection of the number of years
of the calibration and validation periods was evaluated previously. On average
conditions, for a one-year calibration period (validation period of 4 years) the
model performance tended to be better than when selecting 2 or 3 years
(validation period of 3 and 2 years), which were 30% and 45% lower in
performance, respectively.

The calibration of both the observed rainfall and satellite model only included
2011, while the validation included the 2012-2015 period.

The model’s input variables were average monthly values for
precipitation, potential evapotranspiration and streamflows. The
optimization process was based mainly on obtaining suitable model
parameters (X1 and X2) according to Equation 10, using observed
rainfall data and satellite data (TMPA V7, TMPA RT) as input. The
optimized X1 and X2 values for each set of precipitation data are shown
in Table 2, where the values found for the Nash coefficient, water
balance and correlation coefficients are also presented for evaluating
flow data modeled with respect to observed flows.

Table 2. Calibration parameters, Nash-Sutcliffe performance coefficients, differences
between volumes, and coefficient of determination between calculated and observed

flows.
Observed
Parameter Rainfall TMPA V7 | TMPA RT
X1: Production reservoir (mm) 5.76 5.57 6.35
X2: Exchange parameter (mm) 1.00 0.96 0.74
Nash Sutcliffe (NS) coefficient 0.95 0.74 0.54
% difference between observed and
calculated volume (AV) -5 -23 -41
Coefficient of determination (R?) 0.85 0.64 0.45

Similar to the rainfall regime, the streamflow regime observed also showed a
clear decrease from 2011 to 2015, both in the wet and dry seasons, with
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similar patterns in each series of streamflows estimated from satellite data
(TMPA V7 and TMPA RT). Given the water balance and the high performance of
the GR2M model in the estimation of streamflows using observed data, this
deficit is due to the predominant decrease in rainfall, which was also identified
in the streamflows series obtained from satellite. It is also affected by the
increase in evapotranspiration estimated during the dry period between 2011-
2015 (Figures 4a and 3a).
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Figure 4. Observed and modeled streamflows at the Puente Carretera Ilave station
from January 2011 to June 2015. Modeled streamflows were calculated using
precipitation data obtained from (@) rain gauges, (b) TMPA V7 and c) TMPA RT at the
Ilave River basin (IRB).

The decrease in rainfall may be associated with the substantial increase in the
occurrence of warm fronts in the Altiplano, which may increase atmospheric
evaporation, in addition to reducing vegetation (Thibeault, Seth, & Garcia,
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2010). The visual analysis of the hydrographs shows that the streamflows
obtained from observed rainfall (rain gauges) are more similar to observed
streamflows in the Puente Carretera Ilave gauging station (NS = 0.95 and AV
= -5%), which are shown in Figure 4a. The rainfall regime is consistent in
relation to the streamflows obtained in the water balance (see Figure 4a).
Seasonal fluctuations in the flow regime are very well represented by the
GR2M model when using observed data, mainly during the validation period,
such as those recorded in the 2012, 2014 and 2015 flows.

However, the performance of the GR2M model when using TMPA V7 data in the
IRB is minimally acceptable (NS = 0.74, AV = -23%) despite presenting a
relatively high NS (Figure 4b). It was not possible to adequately represent all
the peak flows, which could be due to the overestimation of the rain during wet
season (December-January).

However, it can better reproduce seasonal streamflows, mainly during dry
periods. Lower performance was found with TMPA RT (NS = 0.52, AV = -41%)
(Figure 4c). Results from TMPA RT data were due to an inadequate rainfall
estimate by the TRMM satellite, This is characterized in average values by a
very marked overestimation with respect to the observed dataset (rain gauge)
(31%) and the TMPA V7 dataset (35%) during the wet period (Figure 3d). This
overestimation was also observed during dry season, which resulted in 81%
more than observed rain (rain gauges) and 16% more than rainfall based on
TMPA V7.

Monthly streamflows between 2011 and 2015 obtained from satellite were also
compared to observed streamflows (Puente Carretera ILave station) using
dispersion diagrams (Figure 5a-c). Flows show that the series generated by the
model using observed data (rain gauges) and TMPA V7 better represent the
observed streamflow, presenting acceptable coefficients of determination (0.85
and 0.64, respectively). However, the streamflows (Q> 75 m® / s) present
predominantly during the wet period (January-March) presented a greater
dispersion of the data, unlike other periods (dry season during Junio-Julio or
precipitation start period between September and December). In general, this
suggests a better approximation by the TMPA V7 dataset, whose data was
most similar to observed streamflows. However, the streamflows simulated
using TMPA RT presented greater differences with respect to the observed
streamflows (low coefficient of determination (r2 = 0.45)).
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Figure 5. Observed and modeled streamflows using rain gauges: a) PLU; b) TMPA V7
and c) TMPA RT.

The greater similarity between TMPA V7 and observed rainfall dataset, as well
as overestimation of TMPA RT with respect to observed data (Figure 4b-c), are
congruent with the observed affect on the maximum storage capacity
parameter of the reservoir, X1, since these parameters obtained in the
optimization process (X1) are more similar when they are obtained from TMPA
V7 and observed data (PLU). In addition to X1 tends to be higher when it is
provided by TMPA RT (see Table 2).

On the other hand, the streamflows modeled with GR2M using satellite rain
(TMPA V7, TMPA RT) tend to underestimate observed flows. This is mainly
associated with the optimization process of the model. Therefore, a lower
underground exchange (X2) is effective when using TMPA V7 (X2 = 0.96) and
TMPA RT (X2 = 0.74) (see Table 2). This suggests a negative impact on the
final production of streamflows (X2 is low), which implies that although
satellite precipitation tends to overestimate rainfall observed in the wet

season, the results of the model of this rainfall tend to underestimate observed
flows.

Conclusions
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A clear deficit was identified in the streamflow regime of the Ilave River in the
Peruvian Altiplano for the period 2011-2015. According to the hydrologic
balance, the water deficit was due to the decrease in precipitation in the rainy
period (~ 50%) and increased evapotranspiration in the dry period (~ 24%).

Two monthly rainfall datasets from the TRMM satellite (TMPA V7, TMPA RT)
were compared with a ground-based precipitation dataset (PLU) on the Ilave
River basin.

With average conditions and based on statistical analyses, TMPAV7 was highly
associated with observed precipitation, especially during the wet season
(January-March). However, TMPA V7 tended to overestimate observed rainfall
during the dry period (May-September). On the other hand, data based on
TMPA RT predominantly showed overestimations throughout the year.

To investigate the advantage of satellite data in hydrology, an observed rainfall
dataset (PLU) and a satellite-based rainfall dataset (TMPA V7, TMPA RT) were
used as input variables to the GR2M hydrological model.

The analysis of the hydrographs showed that the flow rates obtained from
observed rain (rain gauges) were more similar to flow rates observed in the
Puente Carretera Ilave gauging station (NS = 0.95). It should be noted that
when using TMPA V7, the performance of the GR2M model data can adequately
represent the seasonal flow cycle (NS = 0.74). However, it does not have the
ability to adequately represent peak flows. This mainly suggests an inadequate
estimate of rainfall during the month of February, characterized by an
underestimation of rainfall.

It was found that TMPA RT (NS = 0.54) performed poorer than TMPA V7. This
poorer performance with the TMPA RT dataset was due to inadequate satellite
estimates, characterized by a marked overestimation of observed rainfall data.
Indeed, the streamflows showed that the series generated by the model using
observed data (rain gauges) and TMPA V7 better represented observed flows
during the wet period.

Errors in the streamflow simulations by the GR2M model may be associated
mainly with rainfall or evapotranspiration input data, in addition to the model’s
limited representation of physical processes. However, the results show that it
is possible to use data from satellites for hydrological modeling of small basins
in the Altiplano of the Peruvian, in order to adequately simulate flow rates.

It is of great interest in hydrology to evaluate the data from the new
generation of rainfall estimates provided by the GPM (Global Precipitation
Measurement) satellite (Schwaller & Morris, 2011). This type of data provides
the possibility of taking advantage of sub-daily data or precipitation sub-
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schedules to estimate flows of the same temporal resolution using hydrological
models.
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