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Abstract 

Precipitation datasets obtained from satellites can be useful in regions where 

rainfall is very heterogeneous, such as Peruvian Andes, which is usually poorly 

monitored. The objective of this study is to characterize the main hydrological 

variables and to understand the potential of precipitation estimates based on 

satellite datasets for hydrological modeling. This article evaluates the 

usefulness of estimated precipitation from observed (rain gauges) and 

satellites datasets (TMPA V7 and TMPA RT products of the TRMM satellite) as 

input in GR2M hydrological model to simulate monthly streamflows between 

2011-2015 for the Ilave River basin located in the Peruvian Altiplano. The 

results from observational datasets indicate a deficit of streamflows due to 

decreased rainfall during wet season (~ 50%), whereas evapotranspiration is 

greater during dry season (~ 24%). Our results show that TMPA V7 has a 

higher similarity with respect to precipitation observed during wet season. 

Results also indicate that GR2M perform better with observed inputs and when 

TMPA-V7 precipitation datasets are used, while the opposite occurs with TMPA 

RT dataset. This poor performance of the hydrological model may be due to 

inadequate rainfall estimation in the water balance. 

Keywords: Precipitation datasets; Hydrological modeling; Andes; TRMM; 

Satellite. 

 

 

Introduction 

 

 

In recent decades, global and quasi-global datasets of satellite-based 

precipitation, terrestrial observations and general circulation models have been 

developed at different temporal resolutions (Huffman et al., 2007). 

Precipitation is an important component of the water cycle and a key input for 

hydrological modeling applications. The reliable quantification of the spatio-
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temporal distribution of rainfall is fundamental to the analysis of extreme 

hydrological phenomena, such as droughts and floods, in real time or almost 

real time. However, measurement networks (meteorological and hydrological) 

in Altiplano regions may be scarce or even non-existent. In addition, the 

presence of the Andes contributes to the high spatial variability of rainfall 

(Espinoza et al., 2009), where large amounts of rainfall can precipitate in a few 

days, increasing the risk of soil instability, landslides and floods (Coscarelli & 

Caloiero, 2012; Zubieta & Saavedra, 2013; Zubieta, Saavedra, Silva, & 

Giraldez, 2017a). Satellite-based precipitation products have increasingly 

facilitated rainfall estimation in much of the world and have become a 

complementary alternative for hydrometeorological applications and climate 

studies in unmonitored regions. These include data from the Tropical Rainfall 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data 

(Huffman, Adler, Bolvin, & Nelkin, 2010). TRMM was a mission initiated in 1997 

by the National Space Development Agency of Japan (JAXA) and the National 

Aeronautics and Space Administration (NASA) of the United States. It came to 

an end on April 8, 2015, as part of its deactivation, having exhausted its 

energy reserves (https://pmm.nasa.gov/trmm/mission-end). Recently, the 

usefulness of these data in Andean-Amazon basins has been evaluated mainly 

by comparing estimated and observed data for both rainfall and streamflow, 

noting that precipitation data from satellites can be used as input for modeling 

flows in watersheds (Zulkafli et al., 2014; Zubieta, Getirana, Espinoza, & 

Lavado, 2015; Milewski, Elikadri, & Durham, 2015; Zubieta, Getirana, 

Espinoza, Lavado-Casimiro, & Aragon, 2017b). Zulkafli et al. (2014) 

documents that the performance of hydrological modeling tends mainly to be 

unsatisfactory for the Andean-Amazonian regions of northern Peru and 

southern Ecuador. However, better results are obtained for the Andean-

Amazonian regions of southern Peru, which are mainly associated with 

adequate rainfall estimates from satellite (Zubieta et al., 2015). 

To assess the usefulness of satellite-based precipitation data, it is necessary to 

investigate temporal variations in rainfall and its impacts on the hydrological 

cycle. The variability of the streamflows in Andean basins is consistent with the 

variability of rainfall on a seasonal and interannual scale. This occurs especially 

in the Peruvian Andes, which is characterized by different rainfall regimes, due 

to its latitudinal extension and the presence of the mountain range (Espinoza 

et al., 2009). For example, rainfall in the basin of the Ramis River in the 

Peruvian Altiplano shows negative trends of 0.70mm / year, while maximum 

temperatures show significant positive trends of 0.04ºC / year, on average. 

Likewise, the minimum temperatures at the basin level present an increase of 

0.0004ºC / year (Belizario, 2015). On the other hand, in recent years, the 

Altiplano region has suffered serious extreme hydrological events, such as 
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intense droughts in 2008 and 2010 (ANA, 2010) and floods in 2012 (RPP 

Noticias, 2012). 

The main objective of this study is to evaluate the capacity of TRMM products 

TMPA V7 and TMPA RT (real time), for satellite-based precipitation, to 

represent useful precipitation fields for hydrological modeling of the Ilave River 

basin (IRB). The IRB is located in the Andes of southern Peru, in the northern 

region of the Altiplano (69.4W-70.38W; 17.14S 15.8S), with drainage area of 7 

790 km2, altitudes ranging from 3 805 to 5 400 meters and an average altitude 

of 4 300 masl (Figure 1a-b). The average annual rainfall throughout the IRB is 

between 494 and 888 mm / year, and it has an average flow of 32 m3 / s. The 

amplitude of the annual precipitation cycle is relatively large, with maximum 

values that occur between December and February, and minimum values 

between June and August. 

 

Figure 1. a) Location of weather stations; b) location of the Ilave River basin, IRB. 

. 

A ground-based precipitation dataset was used for comparison with the 

satellite estimates. Each precipitation dataset (observed and satellite) was 
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used as input for the GR2M model (Niel, Paturel, & Servat, 2003), which is 

based on the GR2M model (Edijatno & Michel, 1989; Kabouya, 1990), and 

adapted by Makhlouf & Michel (1994). Streamflow simulations were compared 

to observed flows. GR2M has been used to simulate the hydrological behavior 

of numerous Andean-Amazon basins in Peru (Lavado, Labat, Guyot, Ronchail, 

& Ordoñez 2009; Lavado, Labat, Guyot, & Ardoin-Bardin, 2011; Vera & Felipe, 

2011). Recently, Lujano, Felipe, Lujano and Quispe (2015) showed that TMPA 

data are feasible to use as input for the GR2M model for the Ramis River basin, 

which is located northwest of the IRB. 

 

 

Data used 

 

 

A daily rainfall dataset was collected from 11 rain stations belonging to the 

National Meteorology and Hydrology Service of PERÚ (SENAMHI). The data 

period selected for the hydrological analysis was between 2010 and 2015. 

However, to ensure the maximum availability of rainfall and hydrometric data, 

a common period (2011-2015) was selected (Figure 1b, Table 1). To evaluate 

its quality, this database was composed of a total of 10 rainfall stations on a 

monthly basis, the regional vector method (RVM) was applied, which uses the 

concept of extended precipitation averaged over the study period (Hiez, 1977; 

Brunet-Moret, 1979; Vauchel, 2006). 

 

Table 1. General characteristics of weather stations: latitude (Lat), longitude (Long), 

altitude (Alt), annual rainfall (rain), maximum temperature (T max), minimum 
temperature (T min) and the percentage of data availability for the period 2011-2015. 

Sation 

Name Lat Long Alt 

Rain 

 

T 

max 

T 

min 

Availability 

of data (%) 

Capazo -17.19 -69.74 4 530 464 13.6 -6.3 99.8 

Mazo Cruz -16.74 -69.72 4 003 564 17.5 -5.0 99.9 

Laraqueri -16.15 -70.07 3 900 788 16.7 -1.6 99.8 

Los Uros -15.82 -69.94 3 808 810 15.8 3.9 99.9 

Rincón La 

Cruz -15.99 -69.81 3 935 872 15.3 2.7 99. 

Ilave -16.07 -69.66 3 871 647 15.3 1.5 99.9 
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Callacame -16.57 -69.32 3 951 413 14.0 1.0 99.8 

Pizacoma -16.91 -69.37 3 930 583 17.0 -0.9 99.9 

Ichuña -16.13 -70.55 3 800 595 20.1 2.5 99.9 

Calacoa -16.74 -70.68 3 260 386 25.0 4 99.8 

 

The least squares method was applied to determine an annual regional rainfall 

index, Zi, and extended average precipitation. For this purpose, this calculation 

can be made by minimizing the sum of Equation (1), where Pij stands for the 

annual rainfall in the station j , Pj is the average precipitation extended i is the 

year index, j is the index of the station, N the number of years, and M the 

number of stations . Finally, the Zi data series is called the annual regional 

vector of rainfall indices. 

 

∑ ∑ (
   

  
   )

 
   

 

   

      

 

Thus, the climate zone was considered the same as the IRB with the same 

rainfall regime. It is assumed that the annual rainfall in the basin’s stations 

shows the proportionality between the stations. 

TRMM provides data derived from its products, which were evaluated in this 

study. One product used was the TMPA 3B42 version 7 was used, obtained 

both in real time and near real time from a set of data from many sensors on 

precipitation satellites (TMPA 3B42 data is available at 

https://pmm.nasa.gov/data-access/downloads/trmm). 

TMPA shows the most successful experience, since its processing has been 

improved by using data having a better scale than other data sources, which is 

essential to creating spatial-temporal averages that are appropriate for the 

user's application (Huffman et al., 2010). The other set of data was taken from 

TMPA-RT precipitation estimates. Unlike TMPA V7, these data do not include 

calibration measurements of rain stations, which are incorporated more than 

one month after the satellite data.  

Both TMPA V7 and TMPA RT provide precipitation data with spatial resolution a 

of 0.25 ° * 0.25 ° and a temporal resolution of 3 hours. Daily rainfall data was 

collected from 11 rain stations belonging to the National Meteorology and 

Hydrology Service (SENAMHI). The data period selected for the hydrological 

analysis was between 2010 and 2015. However, to ensure the maximum 
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availability of rainfall and hydrometric data, we selected a common period 

(2011-2015) (Figure 1b, Table 1).  

To evaluate its quality, this database was composed of a total of 10 rainfall 

stations on a monthly basis. The regional vector method (RVM) was applied, 

which uses the concept of average precipitation extended to the study period 

(Hiez, 1977; Brunet-Moret, 1979; Vauchel, 2006).  

 

 

Methodology 

 

 

The GR2M model (Niel et al., 2003) is a lumped hydrological model that 

requires monthly average information related to climatic variables for a 

drainage area (Figure 1a). Due to the reduced number of rainfall stations (10) 

and some unmonitored regions in the basin, precipitation data was 

interpolated, at the same resolution of the TMPA (0.25 ° * 0.25 °) by means of 

the kriging method, considering the relationship between the stations located 

inside and outside the basin. The method selected in this study is the ordinary 

Kriging, which consists of quantifying the assumption that nearby 

measurements tend to be more similar than those that are located further 

away. Detailed information about the Kriging interpolation method can be 

found in Lichtenstern (2013). Finally, the average precipitation values for each 

month and for the entire basin in the 2010-2015 period were determined. Due 

to the availability of maximum and minimum temperature data, the 

evapotranspiration variable (ETP) was estimated with the Hargreaves & 

Samani model (1985). This calculation is shown in Equation (2): 

 

                                
           

 

where ETP is evapotranspiration (mm / day),    is mean temperature (° C), 

     is maximum temperature (° C),      is minimum temperature (° C) and 

Ra is extraterrestrial radiation (mm / day). This method provides a suitable 

approximation with respect to data obtained by lysimeters in the northern 

Altiplano regions (higher humidity), similar to those obtained by the FAO 

Penman-Monteith equation (García, Raes, Allen, & Herbas, 2004). In fact, 

studies carried out in the Bolivian Altiplano using pasture varieties (above 3 
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000 masl) as a reference crop suggest that the Penman-Monteith and 

Hargreaves-Samani methods sufficiently agree with data from lysimeters 

(García, Raes, & Jacobsen, 2003; García et al., 2004; Vacher, Imana, & 

Canqui, 1994). However, Hargreaves-Samani (1985) tends to slightly 

underestimate data observed in the southern region of the Altiplano, where the 

aerodynamic factors that affect evapotranspiration are more important than in 

the northern Altiplano, due to the plains and greater aridity (García et al., 

2004). 

The conceptual layout of the GR2M model is shown in Figure 2, where the 

parameters of the model are noted as X1 (maximum storage capacity of the 

reservoir in mm) and X2 (groundwater exchange coefficient, dimensionless). 

The GR2M model’s parameters are described as follows (Niel et al., 2003): X1 

parameter is adjusted in order to multiply, in the same proportion, rainfall and 

evapotranspiration rates ranging from 0 to 1;  is a parameter multiplied by 

effective rainfall, (Pe) corresponds to direct flow while (1 -  ), Pe flow 

discharges into the gravity drainage tank; finally, the discharge of the second 

tank is defined with parameter X2 with ranges from 0 to 1.  

The model is based on the transformation of precipitation-runoff through two 

functions: production and transfer. The GR2M model is a model with two 

reservoirs, where the production function is organized around a reservoir called 

reservoir-soil, and the transfer function is governed by the second reservoir 

called gravitational water reservoir, where the contribution is instantaneous at 

the beginning of the time step, then the reservoir empties gradually. The level 

of this reservoir determines the flow rate that can be released (Figure 2). 
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Figure 2. GR2M Model (Mouelhi, 2003). 

Source: Cemagref (www.cenagref.fr). 

 

The input (P) and output (ETP) variables of the reservoir-soil (production 

stored-maximum capacity X1) are calculated based on the storage of the 

production reservoir (S). A portion of precipitation P1 refers to the difference 

between P and the precipitation that enters the soil, and another portion, P2, 

refers to the amount of water that contributes to underground exchange. The 

sum of P1 and P2 corresponds to the effective precipitation, P3, that enters the 

gravitational water reservoir (R) (maximum capacity set at 60 mm). The 

underground exchange (R2) is included in the X2 model (Figure 2). Finally as a 

result for the output flow, the gravitational water reservoir is released 

according to a quadratic function. The optimization of the model responds 

mainly to two parameters: X1, capacity of the reservoir-soil in millimeters, and 

X2, coefficient of underground exchange (dimensionless). For this, a previous 

manual calibration was carried out, to finally use the Excel SOLVER tool. 

To evaluate the performance of the model, the following objective functions 

were used: Nash Sutcliffe Coefficient (NS), difference between calculated and 

observed volumes by the volume error (ΔV) and coefficient of determination 

shown as (              in Equations 11, 12 and 13: 
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Where      is the observed flow,      is the estimated flow,            
 is the 

covariance between      and     , and, finally        and       
 represent the 

standard deviation of the variables, respectively. 

 

 

Results and discussion 

 

 

In average terms, the visual analysis of the estimated evapotranspiration 

regime for the period 2011-2015 did not show significant variations during the 

wet season (~ 166 mm, December-February), however, there was an 

approximate increase from 64 mm to 80 mm during the dry season. As a result 

of the water balance, this increase is associated with the reduction in 

precipitation identified throughout the study period (~ 50%) (see Figure 3a). 

The average annual precipitation in the IRB indicates that TMPA V7 (836.4 

mm) and TMPA RT (1022.5 mm) overestimated observed data (688.0 mm) by 

21.6% and 48.6%, respectively. 

The analysis of monthly precipitation in the IRB shows that the TMPA V7 data 

were more realistic in relation to observed data when a high coefficient of 

determination between them was identified (r2 = 0.86) and lower standard 

error (EME = 25 mm) (Figure 3b). However, TMPA V7 shows differences with 

respect to observed data for rainfall estimates above 50 mm / month. 

Likewise, TMPA RT dataset shows greater differences than TMPA V7 for 

estimates above 50mm / month, despite having an acceptable coefficient of 

determination (r2 = 0.76) and a higher error (EME = 33.1 mm) (Figure 3c) . 
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For a temporal analysis of rainfall, average monthly rainfall was calculated for 

each data set (PLU, TMPA V7, TMPA RT). The analysis corroborates that the 

TMPA V7 estimates best approximate data observed during the wet season 

(December-March) (Figure 3d). However, TMPA V7 shows a tendency to 

overestimate rainfall observed during the dry season by ~ 22 mm (May-

September). On the other hand, TMPA RT data show a tendency to 

overestimate data observed predominantly throughout the year. 

 



 
 

95 
Tecnología y ciencias del agua, 9(5), 85-105, DOI:10.24850/j-tyca-2018-05-04 

 

 

 

Figure 3. a) Comparison between evapotranspiration and observed rainfall; b-c) 

dispersion diagrams based on the rainfall products TMPA V7 and TMPA RT in relation to 

observed rainfall (PO); d) average monthly rainfall for each rain product. 
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The differences identified between the satellite estimates and observed rainfall 

data may be associated with observational variations and/or data from sensors 

providing data input to the algorithm used to estimate satellite precipitation 

(Huffman et al., 2007). In fact, similar results were found in the Ramis River 

basin in the Peruvian Altiplano (Lujano et al., 2015) and other regions in the 

Andes of Peru and Ecuador (Zulkafli et al., 2014; Zubieta et al., 2015). 

For the calibration process of the model, the selection of the number of years 

of the calibration and validation periods was evaluated previously. On average 

conditions, for a one-year calibration period (validation period of 4 years) the 

model performance tended to be better than when selecting 2 or 3 years 

(validation period of 3 and 2 years), which were 30% and 45% lower in 

performance, respectively.  

The calibration of both the observed rainfall and satellite model only included 

2011, while the validation included the 2012-2015 period. 

The model’s input variables were average monthly values for 
precipitation, potential evapotranspiration and streamflows. The 

optimization process was based mainly on obtaining suitable model 
parameters (X1 and X2) according to Equation 10, using observed 

rainfall data and satellite data (TMPA V7, TMPA RT) as input. The 
optimized X1 and X2 values for each set of precipitation data are shown 

in Table 2, where the values found for the Nash coefficient, water 
balance and correlation coefficients are also presented for evaluating 

flow data modeled with respect to observed flows. 

 

Table 2. Calibration parameters, Nash-Sutcliffe performance coefficients, differences 

between volumes, and coefficient of determination between calculated and observed 

flows. 

Parameter 

Observed 

Rainfall TMPA V7 TMPA RT 

X1: Production reservoir (mm) 5.76 5.57 6.35 

X2: Exchange parameter (mm) 1.00 0.96 0.74 

Nash Sutcliffe (NS) coefficient 0.95 0.74 0.54 

% difference between observed and 

calculated volume (ΔV) -5 -23 -41 

Coefficient of determination (R2) 0.85 0.64 0.45 

 

Similar to the rainfall regime, the streamflow regime observed also showed a 

clear decrease from 2011 to 2015, both in the wet and dry seasons, with 
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similar patterns in each series of streamflows estimated from satellite data 

(TMPA V7 and TMPA RT). Given the water balance and the high performance of 

the GR2M model in the estimation of streamflows using observed data, this 

deficit is due to the predominant decrease in rainfall, which was also identified 

in the streamflows series obtained from satellite. It is also affected by the 

increase in evapotranspiration estimated during the dry period between 2011-

2015 (Figures 4a and 3a). 

 

 

Figure 4. Observed and modeled streamflows at the Puente Carretera Ilave station 

from January 2011 to June 2015. Modeled streamflows were calculated using 

precipitation data obtained from (a) rain gauges, (b) TMPA V7 and c) TMPA RT at the 

Ilave River basin (IRB). 

 

The decrease in rainfall may be associated with the substantial increase in the 

occurrence of warm fronts in the Altiplano, which may increase atmospheric 

evaporation, in addition to reducing vegetation (Thibeault, Seth, & Garcia, 
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2010). The visual analysis of the hydrographs shows that the streamflows 

obtained from observed rainfall (rain gauges) are more similar to observed 

streamflows in the Puente Carretera Ilave gauging station (NS = 0.95 and ΔV 

= -5%), which are shown in Figure 4a. The rainfall regime is consistent in 

relation to the streamflows obtained in the water balance (see Figure 4a). 

Seasonal fluctuations in the flow regime are very well represented by the 

GR2M model when using observed data, mainly during the validation period, 

such as those recorded in the 2012, 2014 and 2015 flows. 

However, the performance of the GR2M model when using TMPA V7 data in the 

IRB is minimally acceptable (NS = 0.74, ΔV = -23%) despite presenting a 

relatively high NS (Figure 4b). It was not possible to adequately represent all 

the peak flows, which could be due to the overestimation of the rain during wet 

season (December-January).  

However, it can better reproduce seasonal streamflows, mainly during dry 

periods. Lower performance was found with TMPA RT (NS = 0.52, ΔV = -41%) 

(Figure 4c). Results from TMPA RT data were due to an inadequate rainfall 

estimate by the TRMM satellite, This is characterized in average values by a 

very marked overestimation with respect to the observed dataset (rain gauge) 

(31%) and the TMPA V7 dataset (35%) during the wet period (Figure 3d). This 

overestimation was also observed during dry season, which resulted in 81% 

more than observed rain (rain gauges) and 16% more than rainfall based on 

TMPA V7. 

Monthly streamflows between 2011 and 2015 obtained from satellite were also 

compared to observed streamflows (Puente Carretera ILave station) using 

dispersion diagrams (Figure 5a-c). Flows show that the series generated by the 

model using observed data (rain gauges) and TMPA V7 better represent the 

observed streamflow, presenting acceptable coefficients of determination (0.85 

and 0.64, respectively). However, the streamflows (Q> 75 m3 / s) present 

predominantly during the wet period (January-March) presented a greater 

dispersion of the data, unlike other periods (dry season during Junio-Julio or 

precipitation start period between September and December). In general, this 

suggests a better approximation by the TMPA V7 dataset, whose data was 

most similar to observed streamflows. However, the streamflows simulated 

using TMPA RT presented greater differences with respect to the observed 

streamflows (low coefficient of determination (r2 = 0.45)). 
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Figure 5. Observed and modeled streamflows using rain gauges: a) PLU; b) TMPA V7 

and c) TMPA RT. 

 

The greater similarity between TMPA V7 and observed rainfall dataset, as well 

as overestimation of TMPA RT with respect to observed data (Figure 4b-c), are 

congruent with the observed affect on the maximum storage capacity 

parameter of the reservoir, X1, since these parameters obtained in the 

optimization process (X1) are more similar when they are obtained from TMPA 

V7 and observed data (PLU). In addition to X1 tends to be higher when it is 

provided by TMPA RT (see Table 2).  

On the other hand, the streamflows modeled with GR2M using satellite rain 

(TMPA V7, TMPA RT) tend to underestimate observed flows. This is mainly 

associated with the optimization process of the model. Therefore, a lower 

underground exchange (X2) is effective when using TMPA V7 (X2 = 0.96) and 

TMPA RT (X2 = 0.74) (see Table 2). This suggests a negative impact on the 

final production of streamflows (X2 is low), which implies that although 

satellite precipitation tends to overestimate rainfall observed in the wet 

season, the results of the model of this rainfall tend to underestimate observed 

flows. 

 

 

Conclusions 
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A clear deficit was identified in the streamflow regime of the Ilave River in the 

Peruvian Altiplano for the period 2011-2015. According to the hydrologic 

balance, the water deficit was due to the decrease in precipitation in the rainy 

period (~ 50%) and increased evapotranspiration in the dry period (~ 24%). 

Two monthly rainfall datasets from the TRMM satellite (TMPA V7, TMPA RT) 

were compared with a ground-based precipitation dataset (PLU) on the Ilave 

River basin.  

With average conditions and based on statistical analyses, TMPAV7 was highly 

associated with observed precipitation, especially during the wet season 

(January-March). However, TMPA V7 tended to overestimate observed rainfall 

during the dry period (May-September). On the other hand, data based on 

TMPA RT predominantly showed overestimations throughout the year. 

To investigate the advantage of satellite data in hydrology, an observed rainfall 

dataset (PLU) and a satellite-based rainfall dataset (TMPA V7, TMPA RT) were 

used as input variables to the GR2M hydrological model.  

The analysis of the hydrographs showed that the flow rates obtained from 

observed rain (rain gauges) were more similar to flow rates observed in the 

Puente Carretera Ilave gauging station (NS = 0.95). It should be noted that 

when using TMPA V7, the performance of the GR2M model data can adequately 

represent the seasonal flow cycle (NS = 0.74). However, it does not have the 

ability to adequately represent peak flows. This mainly suggests an inadequate 

estimate of rainfall during the month of February, characterized by an 

underestimation of rainfall. 

It was found that TMPA RT (NS = 0.54) performed poorer than TMPA V7. This 

poorer performance with the TMPA RT dataset was due to inadequate satellite 

estimates, characterized by a marked overestimation of observed rainfall data. 

Indeed, the streamflows showed that the series generated by the model using 

observed data (rain gauges) and TMPA V7 better represented observed flows 

during the wet period. 

Errors in the streamflow simulations by the GR2M model may be associated 

mainly with rainfall or evapotranspiration input data, in addition to the model’s 

limited representation of physical processes. However, the results show that it 

is possible to use data from satellites for hydrological modeling of small basins 

in the Altiplano of the Peruvian, in order to adequately simulate flow rates. 

It is of great interest in hydrology to evaluate the data from the new 

generation of rainfall estimates provided by the GPM (Global Precipitation 

Measurement) satellite (Schwaller & Morris, 2011). This type of data provides 

the possibility of taking advantage of sub-daily data or precipitation sub-
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schedules to estimate flows of the same temporal resolution using hydrological 

models. 
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