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Abstract 
Design Floods allow the hydrological sizing of hydraulic works. When 

hydrometric data is not available, design floods are estimated using 
hydrological methods that are based on Design Rainfalls. The most 

common records used to estimate design rainfalls are the annual 
maximum daily precipitations (PMD), this, due to the scarcity of rainfall 

recorder stations. The impacts of climate change and/or the alteration of 
the geographic environment of rain–gauge stations cause PMD records 

to show trends and therefore these records become non–stationary. In 
order to estimate predictions of low probability of exceedance a 

probabilistic analysis of the non–stationary PMD records can be 
performed. A simple approach without computational difficulties is based 

on the extension of the method of L moments applied to the General of 

Extreme Values (GVE) distribution with its location parameter (u) 
variable with time (t) in years, which is entered as a covariate. When 

the trend in the PMD register is linear, the probabilistic model GVE1 is 
applied in which ut = μ0 + μ1·t and when the trend is curve the model 

GVE2 with ut = μ0 + μ1·t + μ2·t
2 is used. Thus, the GVE1 distribution has 

four fit parameters (μ0, μ1, α, k) and five for the GVE2 distribution (μ0, 

μ1, μ2, α, k). Four numerical applications are described and the analysis 
of their results shows the simplicity of the extension of the L moments 
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method and its versatility to estimate predictions within the historical 
record and to the future. 

 
Keywords: L moments, GEV distribution, standard error of fit, linear 

regression, parabolic regression, determinants, multiple linear 
regression. 

 
Resumen 

Las crecientes de diseño permiten el dimensionamiento hidrológico de 
las obras hidráulicas. Cuando no existen datos hidrométricos, las 

crecientes de diseño se estiman con métodos hidrológicos que se basan 
en las lluvias de diseño. La escasez de estaciones pluviográficas origina 

que los registros más comunes empleados para estimar las lluvias de 
diseño sean los de precipitación máxima diaria (PMD) anual. Debido a 

los impactos del cambio climático y/o a la alteración del entorno 
geográfico de las estaciones pluviométricas, los registros de PMD están 

mostrando tendencias y por lo tanto son no estacionarios. El análisis 
probabilístico de los registros de PMD no estacionarios, orientado a 

estimar predicciones de baja probabilidad de excedencia que puede 
realizar, de manera simple y sin dificultades computacionales, con base 

en la extensión del método de los momentos L para aplicar la 

distribución general de valores extremos (GVE) con su parámetro de 
ubicación (u) variable con el tiempo (t) en años, se introduce como 

covariable. Cuando la tendencia en el registro de PMD es lineal, se aplica 
el modelo probabilístico GVE1, en el cual ut = μ0 + μ1∙t y cuando es 

curva el modelo GVE2 con ut = μ0 + μ1∙t + μ2∙t
2. Entonces, la 

distribución GVE1 tiene cuatro parámetros de ajuste (μ0, μ1, α, k) y la 

GVE2 cinco (μ0, μ1, μ2, α, k). Se describen cuatro aplicaciones 
numéricas, y a través del análisis de sus resultados se demuestra la 

sencillez de la extensión del método de los momentos L y su versatilidad 
para estimar predicciones dentro del registro histórico y a futuro. 

Palabras clave: momentos L, distribución GVE, error estándar de 
ajuste, regresión lineal, regresión parabólica, determinantes, regresión 

lineal múltiple. 
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Introduction 

 

 
Generalities 

 
 

Design rainfalls are maximum precipitations of a certain duration 

associated to low exceedance probabilities, based on which, by means of 
hydrological methods, the Design Floods are estimated, when 

hydrometric records are not available. Details of the above can be found 

in Teegavarapu (2012) and Mujumdar and Nagesh Kumar (2012). 
Design floods allow the sizing of hydraulic works, during their planning 

or when they are checked for safety. The most reliable estimate of 
design rainfalls is based on the probabilistic analysis (AP) of the annual 

maximum data, which assumes that the random process that generates 
the observed precipitations is stationary and therefore, its statistical 

properties do not change over time. In the AP, a known probability 
distribution function (FDP) is adjusted to the precipitation record and 

based on it, the predictions sought or design rainfalls are made. Due to 
the scarcity of rainfall recorder stations and the relative abundance of 

rain–gauge stations, the most commonly processed extreme rainfall 
records are those of the annual maximum daily precipitation (PMD). 

At present, all rain–gauge stations are subject to the effects of global 
climate change, or their geographical environment suffers physical 

changes generated by human activities, among the most striking are 

urbanization, deforestation, dewatering of lagoons and the construction 
of reservoirs, which alter local atmospheric processes, giving rise to 

series or records of annual non–stationary PMD, since they present 
trends (Strupczewski & Kaczmarek, 2001; Khaliq, Ouarda, Ondo, 

Gachon, & Bobée, 2006; El Adlouni, Ouarda, Zhang, Roy, & Bobée, 
2007; El Adlouni & Ouarda, 2008).  

To perform the AP of non–stationary records, the statistical theory of 
extreme values has been extended to adjust the classical model which 

follows asymptotically the maximum hydrological data series, that is, 
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the FDP General of Extreme Values (GVE0) stationary with three fit 
parameters (u,α,k). The above based on the introduction of so–called 

covariables, one of the most used is the time (t) in years, through which 
the trend observed in the data series can be taken into account, 

adopting variable the location parameter (ut). When the trend is linear 
(ut = μ0 + μ1·t) the GVE1 model of four fit parameters (μ0, μ1, α, k) is 

fitted. If the trend is curved (ut = μ0 + μ1·t +μ2·t
2) the GVE2 model of 

five fit parameters (μ0, μ1, μ2, α, k) is applied; in this model two 

covariables (ut = μ0 + μ1·t +μ2·h) can be used (Khaliq et al., 2006; 
Prosdocimi, Kjeldsen, & Miller, 2015). 

Regarding to other non–stationary distributions, there are several, for 

example the Log-Normal (Vogel, Yaindl, & Walter, 2011; Aissaoui-
Fqayeh, El Adlouni, Ouarda, & St. Hilaire, 2009) and the Generalized 

Logistics models (Kim, Nam, Ahn, Kim, & Heo, 2015) and Generalized 
Pareto (Rao & Hamed, 2000), which are susceptible to an identical 

treatment to the one that will be exposed for the GVE distribution. Other 
covariates can also be used instead of time (t), for example some global 

or regional climate indexes (Prosdocimi, Kjeldsen, & Svensson, 2014; 
López-de-la-Cruz & Francés, 2014; Álvarez-Olguín & Escalante-

Sandoval, 2016; Campos-Aranda, 2018). 

 
 

Objective 
 
 

The objective of this study was to present the fitting theory of the non–

stationary distributions GVE1 and GVE2, by means of the generalization 
of the method of L moments, initially proposed by El Adlouni and Ouarda 

(2008) and subsequently applied by Gado and Nguyen (2016). In 
addition, four series of annual PMD are exposed and processed, all with 

trend and the results of the fitting of the model GVE1 or GVE2 are 
described, highlighting the simplicity and usefulness of the extension of 

the L–moments method to obtain the predictions within the historical 

record and to the future. 

 

 

Methods and materials 
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General of Extreme Values Distribution 

 
 

The maximum annual values are events that occur in the right tail of the 

FDP, which defines the behavior of the hydrological random variable. 
Therefore, the design rainfalls can be predicted based on the FDP, as the 

maximum value corresponding to a certain average interval of 
recurrence or return period (Tr), whose probability of exceedance is p = 

1/Tr. The theory of extreme values established that the extreme data 
follow asymptotically to the FDP General of Extreme Values (GVE), 

whose application has been recommended (Stedinger, Vogel, & 
Foufoula-Georgiou, 1993; Hosking & Wallis, 1997; Coles, 2001; Khaliq 

et al., 2006; Papalexiou & Koutsoyiannis, 2013; Gado & Nguyen, 2016) 

to model extreme hydrological data (dh) with a probability of non–

exceedance [F(dh)] that is: 
 

 (  )     { [  
 (    )

 
]
   

} when     (1) 

 

In the previous expression, u, α and k are the location, scale and shape 
parameters of the GVE0. When k = 0 the Gumbel distribution is 

obtained, which is a straight line in the Gumbel–Powell probability 
paper, whereby the interval of the variable is: –∞< dh <∞. When k > 0 

the distribution is Weibull which is a curve with concavity downwards 
and upper limit, whereby: –∞< dh ≤ u + α/k. Finally, if k < 0 the 

distribution is Fréchet which is also a curve but with a concavity 
upwards and lower border, so: u+α/k ≤ dh <∞. The predictions sought 

(DHTr) are obtained with the inverse solution of equation 1: 
 

       
 

 
*  ,   (   )- + when     (2) 

 
 

L-Moments of the data sample 
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The L–moments method is perhaps the simplest of the reliable 
procedures for estimating the fitting parameters of the PDFs used in 

hydrology. This is due to the fact that the L–moments, which are linear 
combinations (Hosking & Wallis, 1997) of the weighted probability 

moments (βr), are not affected significantly by the scattered values 
(outliers) of the sample. The first three L–moments of a sample (l1, l2, 

l3) and the asymmetry L–ratio (t3), are estimated through the unbiased 
estimator (br) of the βr, as follows:  

 
      (3) 

           (4) 

                (5) 

         (6) 

 

The unbiased estimator of the βr is (Hosking & Wallis, 1997):  

 

   
 

 
∑

(   )(   ) (   )
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      (7) 

 

where r = 0, 1, 2,…. and dhi are the data of the available sample or 
series of hydrological data of size n, ordered from low to high (    
         ).  

 
 

Fit parameters of the stationary distribution GVE 
 
 

For the GVE0 model with the L–moments method, its three fit 
parameters are calculated with the equations (Stedinger et al., 1993; 

Hosking & Wallis, 1997; Rao & Hamed, 2000; Campos-Aranda, 2018): 
 

                     (8) 

being: 
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For the estimation of the Gamma Γ(ω) function the Stirling formula 

(Davis, 1972) was used, shown in the following equation (12): 
 

 ( )             √  

 [  
 

    
 

 

      
 

   

        
 

   

          
  ] 

 
 

AP non–stationary with GVE1 and GVE2 

 
 

According to Strupczewski and Kaczmarek (2001) the fit of the non–
stationary distributions GVE1 and GVE2 implies two assumptions: (1) it is 

accepted that the non–stationarity of the annual PMD series is caused by 

gradual changes in the geographical environment and/or global climate 
change, generating a slight alteration of its statistical parameters and 

(2) it is accepted that the FDP is independent of time, so the distribution 
GVE, with fit parameters that are variable over time, is acceptable for 

modeling extreme non–stationary data. Therefore the mean (μt) of the 
distribution GVE must be considered variable over time whose 

expression is (Rao & Hamed, 2000):  
 

    
 

 
,   (   )- (13) 

 

 

Fit of the distribution GVE1 

 

 
The inspection of the PMDi time series will allow to define if a trend of 
the linear mean (μt) or curve is adopted. When the trend in the mean is 

linear and is introduced in equation 13, the location parameter (u) can 
be cleared that will now be variable with respect to time t, which varies 

of 1 to n, its expression is (El Adlouni & Ouarda, 2008; Gado & Nguyen, 
2016):  
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The magnitudes μ0 and μ1 of the line representing the linear trend of the 
sample or series of data PMDi are obtained based on the equations in 

Appendix 1. To prove that the slope μ1 is statistically different from zero, 
the equations in Appendix 2 are applied. To estimate the values of the 

scale parameters (α) and shape (k) of the previous expression that 
correspond to the stationary FDP (GVE0), the trend of the PMDi series is 
removed to obtain a stationary series     

 
, based on the following 

equation (Khaliq et al., 2006):  
 

    
 
           (15) 

 

Then equations 8 to 10 are applied to obtain the sought values of α and 
k. Finally, equation 2 is applied using expression 14 to take the variable 

location parameter (ut) into account over time and make predictions 
within the historical record (t < n) and at the end of it (t = n), as well as 

several years later (t > n), for example in the future at the end of the 
useful life of the hydraulic work analyzed, which takes into account the 

trend observed in the series of hydrological data (Mudersbach & Jensen, 
2010). 

 

 
Fit of the distribution GVE2 

 
 

When the trend of the mean (μt) is curve and is introduced into the 

equation 13, the parameter of variable location (ut) with respect to time, 
is equal to (El Adlouni & Ouarda, 2008; Gado & Nguyen, 2016):  

 

               
  

 

 
,   (   )- (16) 

 
The magnitudes μ0, μ1 and μ2 of the curve equation representing the 

trend of the sample or series of data PMDi are obtained based on the 
equations of Appendix 3. To estimate the values of the scale (α) and 

shape (k) parameters of the previous expression that correspond to the 
FDP stationary (GVE0), the trend of the series PMDi is removed to obtain 
a stationary series     

 
, based on the following equation:  

 
    

 
               

  (17) 
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Then, equations 8 to 10 are applied to obtain the sought values of α and 
k. Finally, equation 2 is applied using expression 16 to take the variable 

location parameter (ut) into account over time and make predictions 
within the historical record (t < n), at the end of this (t = n) and at a 

future time, as indicated for the GVE1 model. 
 

The non-stationary distribution GVE2 can also be applied with two 
covariates (t and h), leaving the variable location parameter (ut) equal 

to (Prosdocimi et al., 2014; Prosdocimi et al., 2015):  
 

                
 

 
,   (   )- (18) 

 

The magnitudes μ0, μ1 y μ2 of the multiple linear regression equation 

representing the trend of the sample or series of PMDi data are obtained 
based on the equations in Appendix 4. To estimate the values of the 

scale (α) and shape (k) parameters of the previous expression that 
correspond to the FDP stationary (GVE0), the trend of the PMDi series is 
removed to obtain a stationary series     

 
 based on the following 

equation:  
 
    

 
                (19) 

 
Then, equations 8 to 10 are applied to obtain the sought values of a and 

k. Then equation 2 is applied using expression 18 to take the variable 
location parameter (ut) into account over time and make predictions 

within the historical record (t < n), at the end of it (t = n), and at a 
future time (t > n) as indicated for the GVE1 model. 

 
 

Standard error of fit 

 
 

Since the mid–1970s the standard error of fit (EEA) was formulated as a 

quantitative measure that estimates the descriptive ability of the fit 
probabilistic model (Meylan, Favre, & Musy, 2012) and that also allows 

the objective comparison between the various FDPs that are tested or 
fitted to a series or sample of data, since it has the data units (PMDi). 

Its expression is the following (Kite, 1977):  
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    √
∑ (    

      
 )
  

   

     
 (20) 

 
where, n is the number of data of the available series, npa is the 

number of fit parameters of the FDP that is tested, with four for the 
model GVE1 and five for the two models GVE2,     

  are the data 

ordered from lowest to highest and     
  are the values estimated with 

equation 2 of the FDP (GVE1 or GVE2), for non–exceedance probability 
P(X < x) estimated with the Weibull formula (Benson, 1962): 

 

 (   )  
 

   
 (21) 

 
in which, m is the order number of the data, with 1 for the lowest and n 

for the highest. The calculation of the EEA with equation 20, allows the 
comparison of other non–stationary probabilistic models in the series 

that is processed. When the EEA values are similar, a non–stationary 
model can be adopted in a subjective manner, for example, the one that 

leads to the most unfavorable predictions. 

 
 

Approach of the probabilistic analysis 
 

 
Based on equation 2, predictions with return periods (Tr) of 2, 10, 25, 
50 and 100 years were estimated through the record period, applying 

variable the location parameter (ut). The first prediction corresponds to 
the median, since its probability of non–exceedance (1–p) is 50% and 

the following three are calculated for the following values: 0.90, 0.96, 
0.98 and 0.99, respectively. In addition, predictions are made in the 

processed series for the future, in the years 2025 and 2050. It is 

considered that extrapolating the observed behavior of the historical 
trend over 30 years is quite risky. It is also shown in the data graphs 

and predictions the estimates of the extreme return periods (2 and 100 
years) with the stationary model GVE0, which are horizontal straight 

lines that are indicated dotted. 

 

 

Non-stationary AP with LOG y PAG 



 
 

 
2019, Instituto Mexicano de Tecnología del 

Agua 
Open Access bajo la licencia CC BY-NC-SA 

4.0 (https://creativecommons.org/licenses/by-
nc-sa/4.0/) 

 
 

Tecnología y ciencias del agua, ISSN 2007-2422, 10(5), 75-105. DOI: 10.24850/j-tyca-2019-05-03  85 
 

 
 

The FDPs Generalized Logistics (LOG) and Generalized Pareto (PAG) are 
two probabilistic models used regularly in the analysis of extreme 

hydrological data frequencies which are applicable in their non–

stationary versions with variable location parameter (ut) by means of 
generalization of the L–moments method, as has been exposed from 

equation 13. This key equation of the method has the following 
expressions in the LOG and PAG distributions (Rao & Hamed, 2000):  

 

    
 

 
,   (   )   (   )- (22) 

 

    
 

   
 (23) 

 
Regard to equations 1 and 2 corresponding to the LOG and PAG 

distributions can be consulted in Hosking and Wallis (1997), and 
Campos-Aranda (2018). 

 
 

Criterion of severity of the linear trend 

 
 

Equations in Apendix 2 lead to two statistics associated with the slope of 

linear regression, the calculated DS and its corresponding critical 
value    . When the DS slightly exceeds    , the slope is significant and 

is mild. When the DS exceeds by one unit or more to the    , the slope 

is severe. Moderate slopes occur in the intermediate case. 

 

 

Series 1 with severe downward linear trend 
 

 
This annual PMD record belongs to the Abritas rain–gauge station, 
located in the municipality of Ciudad del Maíz in the northern zone of the 

Huasteca region of the state of San Luis Potosí, Mexico. It covers 54 
years in the period from 1961 to 2015, since it has incomplete the year 

of 1998. With the exception of series 2, the information of this record 
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and of the others was provided by the San Luis Potosí Local Office of the 
National Water Commission. Its values are cited in Table 1. 

 
Table 1. Maximum annual data of PMD in millimeters, in three stations of the state of 

San Luis Potosí, Mexico. 

No. 

da–

to 

Abri–

tas 

Las 

Adjun–

tas 

Los 

Fil–

tros 

No. 

da–

to 

Abri–

tas 

Las 

Adjun–

tas 

Los 

Fil–

tros 

No. 

da–

to 

Los 

Fil–

tros 

1 150.0  57.4 15.9 28 140.0  38.0 58.0 55 40.2 

2 131.5  75.0 20.6 29  90.0 182.5 42.9 56 111. 

3 127.5  42.0 50.9 30 140.0 134.7 26.4 57 43.3 

4 183.0  65.5 40.5 31 168.0  69.4 65.5 58 76.9 

5  87.0  72.2 63.6 32 194.0 118.2 22.0 59 42.8 

6 215.5  63.2 41.9 33  80.0 111.4 51.2 60 46.1 

7 203.5  131.5 60.0 34  85.0  92.3 66.5 61 42.5 

8 110.0  70.9 35.9 35 138.0  86.0 26.0 62 45.3 

9 187.5 100.3 48.6 36 138.0 108.7 31.5 63 44.5 

10 254.0 141.5 63.0 37  84.0  67.5 46.5 64 26.0 

11 102.0  58.1 35.5 38  56.0  72.0 44.0 65 59.1 

12 130.0  74.7 40.0 39  85.0  76.8 41.0 66 44.1 

13 164.0  87.0 63.2 40  33.0  58.0 55.0 67 63.0 

14 280.0 134.0 39.4 41  23.1  83.0 21.5 68 51.6 

15 147.0  78.4 27.2 42  35.0  58.9 29.8 – – 

16 170.0 237.5 59.0 43  70.4 116.8 41.5 – – 

17 193.0  80.0 32.0 44  57.0 141.0 24.9 – – 

18  85.0  59.2 30.0 45  71.0 119.3 59.0 – – 

19 116.5  93.0 40.2 46 120.0  86.3 33.5 – – 

20  87.0  72.2 31.5 47 223.2 146.1 46.5 – – 

21 150.0  85.0 31.5 48  90.9 115.5 51.0 – – 

22  97.0  68.0 52.0 49 133.0 132.7 40.0 – – 

23 120.0  86.4 52.3 50 100.0 303.8 35.5 – – 

24  64.0  66.7 31.3 51 102.0  75.3 45.5 – – 

25  90.0  80.5 35.0 52  98.0  70.0 25.9 – – 

26 175.0 100.0 28.5 53  98.0 151.5 20.7 – – 

27 100.0 133.5 57.2 54  95.0 125.1 37.5 – – 

 

 
Series 2 with mild upwards linear trend 

 

 
Campos-Aranda (2016) presented the annual PMD record of the 

Zacatecas rain–gauge station in the state capital of the same name in 
Mexico, with 58 data in the period from 1953 to 2010, which showed a 
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linear upward logarithmic trend; due to this, it was processed in such a 
reference, based on the FDP Log–normal non–stationary of two fitting 

parameters, suggested by Vogel et al. (2011). 

 

 

Series 3 with moderate upward linear trend 

 

 
This record of annual PMD belongs to the rain–gauge station Las 
Adjuntas, located where the rivers Tampaón and Moctezuma join to 

form the Pánuco river, in the eastern zone of the Huasteca region of the 
state of San Luis Potosí, Mexico. It covers 54 years in the interval from 

1961 to 2015, because the year of 1986 is missing, its values are shown 
in Table 1. 

 
 

Series 4 with curved convex trend 

 
 

This record of annual PMD belongs to the Los Filtros rain–gauge station, 

located within the city of San Luis Potosí, capital of the state of the 
same name in Mexico. It covers 68 years in the interval from 1949 to 

2016. Its values are in the Table 1. 

 

 

Description of results 

 

 
Predictions in the Abritas station, S.L.P. 

 
 

First, equations of Appendix 1 were applied and μ0 = 167.6315, μ1 = –
1.6057 y rxy = –0.4619 were obtained. Then the linear trend was tested 

with equations of the Appendix 2, a DS = –3.7558 and DSc = 2.0066 
were obtained, which was highly significant. The stationary series (    

 
, 

equation 15) accepts a GVE0 model with scale and shape parameters of: 

α = 41.4364 and k = 0.0691; however, equation 2 using the variable 
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location parameter (equation 14) leads to a 34.8 mm standard error of 
fit (EEA). Table 2 shows part of the predictions within the historical 

record and an extrapolation to a decade (year 2025), since at future 
they are smaller due to the downward slope. Predictions with the 

stationary model GVE0 of return periods 2 and 100 years are: 114.9 and 
290.8 mm, with an EEA = 6.0 mm. Figure 1 shows the chronological 

series of the data and the lines of the predictions, which are plotted, 
based on the predictions in Table 2, within the historical record with the 

values of the covariate t that vary from 1 to n. 
 
Table 2. Predictions in millimeters in the historical and to future period in the 

station Abritas, S.L.P., based on the non–stationary distribution GVE1. 

t Year 
Return periods (years) 

2 10 25 50 100 

1 1961 159.6 230.9 263.5 286.3 307.8 

10 1970 145.1 216.5 249.0 271.8 293.4 

20 1980 129.0 200.4 233.0 255.8 277.3 

30 1990 113.0 184.3 216.9 239.7 261.3 

40 2001  96.9 168.3 200.8 223.6 245.2 

50 2011  80.9 152.2 184.8 207.6 229.2 

54 2015  74.5 145.8 178.4 201.2 222.7 

64 2025  58.4 129.8 162.3 185.1 206.7 
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Figure 1. Chronological series of annual PMD and estimated prediction lines with the 

distribution GVE1 in the Abritas station, S.L.P., Mexico. 

 
 

Predictions in the Zacatecas, Zac. Station 
 
 

When applying the equations of Appendix 1: μ0 = 40.1247, μ1 = 0.2246 

and rxy = 0.2638 was obtained. The linear trend was then tested with 
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equations of Appendix 2, obtaining a DS = 2.0463 and a DSc = 2.0032, 
whereby it was scarcely significant. The stationary series (    

 
 

equation 15) accepts a GVE0 model with scale and shape parameters of: 

α =11.8358 and k = 0.0709: however, equation 2 using the variable 
location parameter (equation 14) leads to a 3.0 mm standard error of 

fit. Table 3 shows a part of the predictions within the historical and to 
future record in the years 2025, 2050 and 2100. As this record of 58 

data ends in the year 2010, then, the value of time t in 2025 is 73, in 
2050 is 98 and 2100 is 148. The predictions with the stationary model 

GVE0 of return periods 2 and 100 years are: 45.2 and 86.7 mm, with an 
EEA = 1.5 mm. Figure 2 shows the chronological series of data and lines 

of the predictions, plotted according to the results of Table 3. 
 
Table 3. Predictions (mm) in the historical period and to future in the Zacatecas, Zac., 

station, based on the non–stationary distribution GVE1. 

t Year 
Return periods (years) 

2 10 25 50 100 

1 1953 38.5 58.9  68.1  74.6  80.7 

10 1962 40.5 60.9  70.1  76.6  82.7 

20 1972 42.8 63.1  72.4  78.9  85.0 

30 1982 45.0 65.4  74.6  81.1  87.2 

40 1992 47.3 67.6  76.9  83.3  89.5 

50 2002 49.5 69.9  79.1  85.6  91.7 

58 2010 51.3 71.7  80.9  87.4  93.5 

73 2025 54.7 75.0  84.3  90.8  96.9 

98 2050 60.3 80.6  89.9  96.4 102.5 

148 2100 71.5 91.9 101.1 107.6 113.7 
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Figure 2. Chronological series of annual PMD and estimated prediction lines with the 

distribution GVE1 in Zacatecas station, Zac., Mexico.  

 
 

Predictions in the Las Adjuntas station, S.L.P. 
 
 

When applying equations of Appendix 1, μ0 = 74.9213, μ1 = 0.8813 and 
rxy = 0.2981 was obtained. The linear trend was then tested with the 

equations in Appendix 2, a DS = 2.2520 and a DSc = 2.0066 were 
obtained, therefore it was moderately significant. The stationary series  
(    

 
 equation 15) accepts a GVE0 model with scale and shape 

parameters of α = 26.5840 and k = –0.1617; however, equation 2 using 
the variable location parameter (equation 14) leads to a 15.6 mm 

standard error of fit. Table 4 shows a part of the predictions within the 
historical record and to future in the years 2025, 2050 and 2100. As this 

record of 54 data ends in the year 2015, then, the value of time t in 
2025 is 64, in 2050 is 89 and 2100 is 139. The predictions with the 

stationary model GVE0 of return periods 2 and 100 years are: 87.4 and 
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280.9 mm, with an EEA = 11.3 mm. Figure 3 shows the chronological 
series of data and lines of the predictions, plotted according to the 

results of Table 4. 
 

Table 4. Predictions (mm) in the historical period and to future in Las Adjuntas, S.L.P., 

station, based on the non-stationary distribution GVE1. 

t Year 
Return periods (Years) 

2 10 25 50 100 

1 1961  65.7 127.8 167.0 200.2 237.2 

10 1970  73.6 135.7 174.9 208.2 245.1 

20 1980  82.4 144.5 183.7 217.0 253.9 

30 1991  91.2 153.4 192.6 225.8 262.7 

40 2001 100.0 162.2 201.4 234.6 271.5 

50 2011 108.9 171.0 210.2 243.4 280.3 

54 2015 112.4 174.5 213.7 246.9 283.9 

64 2025 121.2 183.3 222.5 255.8 292.7 

89 2050 143.2 205.4 244.6 277.8 314.7 

139 2100 187.3 249.4 288.6 321.8 358.8 
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Figure 3. Chronological series of annual PMD and estimated prediction lines with the 

GVE1 distribution in Las Adjuntas station, S.L.P., Mexico. 

 
 

Predictions in Los Filtros station, S.L.P. 
 
 

Equations in Appendix 3 lead to the following values: μ0 = 43.7097, μ1 

= –0.2339 and μ2 = 0.0049 as coefficients of the polynomial regression 
(equation A3.1). The stationary series (    

 
 equation 17) accepts a 
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GVE0 model with scale and shape parameters of: α =12.6389 and k = 
0.05071: however, equation 2 using the variable location parameter 

(equation 16) leads to a 4.3 mm standard error of fit. Table 5 shows a 
part of the predictions within the historical record and to future in the 

years 2025 and 2050. As this record of 66 data ends in the year 2016, 
then, the value of time t in 2025 is 77 and in 2050 is 102. The 

predictions with the stationary model GVE0 of return periods 2 and 100 
years are: 41.5 and 87.5 mm, with an EEA = 3.7 mm. Figure 4 shows 

the chronological series of data and curves of predictions, plotted based 
on the results of Table 5. 

 
Table 5. Predictions (mm) in the historical period and to future in Los Filtros station, 

S.L.P., based on the non-stationary distribution GVE2. 

t Year 
Return periods (years) 

2 10 25 50 100 

1 1949 41.3 63.6  74.0  81.4  88.6 

10 1958 39.7 62.0  72.4  79.8  86.9 

20 1968 38.8 61.1  71.5  79.0  86.1 

30 1978 38.9 61.2  71.7  79.1  86.2 

40 1988 40.1 62.3  72.8  80.2  87.3 

50 1998 42.2 64.5  74.9  82.3  89.4 

60 2008 45.3 67.5  78.0  85.4  92.5 

68 2016 48.4 70.7  81.2  88.6  95.7 

77 2025 52.8 75.1  85.5  92.9 100.0 

102 2050 69.0 91.3 101.8 109.2 116.3 
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Figure 4. Chronological series of annual PMD and estimated prediction curves with the 

distribution GVE2 in Los Filtros station, S.L.P., Mexico. 

 
 

Predictions in the future 
 
 

The four numerical applications described cover the most common cases 

that are known of non–stationary PMDi records, which correspond to 
series with downward (severe) and upward (mild and moderate) linear 

trend and with upward curve trend (mild in an appreciative context) 
towards the future. Upward trends usually occur in rain–gauge stations 

located in cities, or where a large nearby reservoir has been built. In the 
first case there is an increase in temperature due to the effects of the 

heat island and in the second there may be an increase in relative 
humidity due to evaporation. Downward trends may be associated to 

regional climate change. 
Naturally, the predictions associated with low probabilities of 

exceedance are less important in records with a downward trend, 
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because they are lower in the future. The opposite occurs in series with 
upward trend, in which it is necessary to explain or justify the probable 

physical origin of such trend, to accept extrapolations of the predictions 
to future and to try to discern about the real scope of them, since it is 

extremely risky to adopt the behavior of trend in increase, when, for 
example, it is not known if urban development will continue. 

 

 

Conclusions 

 

 
The probabilistic analysis of non–stationary PMDi records that show 

trends will be, in the immediate future, increasingly common, due to the 
impacts of climate change and urban development. A simple approach 

and without computational difficulties to process such records, is based 
on the extension of the theory of extreme values through the fit with L–

moments, of the non–stationary GVE1 and GVE2 distributions with 
variable location parameter (u) with time (t) or other covariates. 

Through the description of the four numerical applications in non–
stationary records of PMDi, the simplicity of the exposed method is 

observed, as well as the facility to obtain the predictions associated with 
probabilities of non–exceedance. The selection among the exposed 

models (GVE1 and GVE2) depends on the observed trend, so their 
graphic contrast is basic to validate the descriptive ability of the 

predictions within the historical record and in the near future (years 

2025 and 2050). The numerical results of the standard error of fit will 
allow the contrast and acceptance of other non–stationary probabilistic 

models. 

 
 

Appendix 1: Linear trend line 
 
 

It is considered that the dependent variable (y) is the maximum annual 

hydrological data or PMDi and the times or years t are the abscissa (x), 
in this case equal to the i–th value i. The slope (μ1) of the regression line 
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fitted by least squares of the residuals and the ordinate to the origin 
(μ0) are obtained with the following equations (Campos-Aranda, 2003): 

 
             (A1.1) 

 

   
   (     )
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∑           ̅̅ ̅̅ ̅̅ ̅ 
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      ̅̅ ̅̅ ̅̅ ̅       ̅(A1.3) 

 

In the previous equations    ̅̅ ̅̅ ̅̅ ̅ and  ̅ are the arithmetic means of the 

series of data and time, which range from 1 to n. The linear correlation 
coefficient (rxy) measures the degree of dependence or association 

between the variables PMDi and t, varies from zero to one, indicating 
with the unit the perfect regression, its equation is: 
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   (   )  
 

 
∑     

     ̅̅ ̅̅ ̅̅ ̅  
    (A1.5) 

 
 

Appendix 2: Statistical test of the slope 
 
 

To test whether the slope (μ1) of the regression line, obtained with the 
equation A1.2, is statistically different from zero, a test based on the 

Student distribution that was proposed by Ostle and Mensing (1975) 
was used and that applies the statistical DS by means of the following 

three equations: 
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∑ (         
 )
  

   

(   )
 (A2.3) 

 
  
  and   

  are the variances of the errors and of the slope. In the 

previous equation,     
  is the value estimated with equation A1.1. If 

the calculated absolute value DS (equation A2.1) is greater than the 
critical (DSc), obtained for the Student distribution with ν = n – 2 

degrees of freedom and α = 5%, in a two–tailed test, the slope μ1 is 
significant, that is, there is a linear trend. To estimate the value DSc the 

algorithm proposed by Zelen and Severo (1972) is used with Z = 
1.95996 for a reliability (1 – α) of 95%. 

 

      
  

 
 
  

  
 
  

  
 
  

  
 (A2.4) 

 

where: 
 

  G1 = (Z3 + Z)/4 
G2 = (5Z5 +16Z3 + 3Z)/96 

G3 = (3Z7 + 19Z5 + 17Z3 – 15Z)/384 
G4 = (79Z9 + 776Z7 + 1482Z5 – 1920Z3 – 945Z)/92160 

 
 

Appendix 3: Parabolic Curve for the trend 
 
 

The dependent variable (y) are the maximum annual hydrological data 
or PMDi and the times or years t are the abscissa (x), in this case equal 

to i–th value i. The coefficients μ0, μ1 and μ2 of the polynomial 
regression curve are: 

 

                 
  (A3.1) 

 

fitted by least squares of the residuals, are obtained based on the 
following normal equations (Campos-Aranda, 2003): 
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   ∑       ∑       ∑    ∑        

 
   

 
   

 
   

 
    (A3.4) 

 

In the three previous expressions, n is the number of values of the 
series of extreme hydrological data processed and all the summations 

lead to numerical magnitudes which are the coefficients of μ0, μ1 and μ2 
in each row and column (Cjk); In addition, there are the magnitudes of 

the right side of the equations, known as independent terms. The 

determinant Δ of such coefficients is evaluated with the following 
expression (Chapra & Canale, 1988): 

 

  |

         
         
         

| (A3.5) 

 
                                                           
                (A3.6) 

 

To obtain the sought value of μ0, a determinant Δ0 is formed by 
changing column 1 of coefficients for the three independent terms and 

evaluating their value with equation A3.6, then: 
 

        
  

 
 (A3.7) 

 

The determinant Δ1 is formed by changing column 2 of coefficients by 
the three independent terms, its magnitude is obtained with equation 

A3.6 and then: 
 

        
  

 
 (A3.8) 

 

Finally, the determinant Δ2 is formed by changing the third column of 
coefficients for the three independent terms and their value is quantified 

with equation A3.6 and now we have that: 
 

        
  

 
 (A3.9) 

 
 

Appendix 4. Multiple linear regression for the trend 
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Again, the dependent variable (y) is the maximum annual hydrological 

data or PMDi and the times or years t are the abscissa (x), in this case 
equal to the i–th value i. The coefficients μ0, μ1 and μ2, of the multiple 

linear regression are: 
 

                   (A4.1) 

 
fitted by least squares of the residuals, are obtained based on the 

following normal equations (Campos-Aranda, 2003):  
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In the three previous expressions, n is the number of values of the 
series of extreme hydrological data processed and all the summations 

lead to numerical magnitudes that are the coefficients of μ0, μ1 and μ2 in 
each row and column (Cjk); In addition, there are the magnitudes of the 

right side of the equations, known as independent terms. The 
determinant Δ of such coefficients is formed with equation A3.5, whose 

magnitude is obtained with the expression A3.6. 

The sought values of μ0, μ1 and μ2 are calculated with the procedures in 
equations A3.7 to A3.9. Prosdocimi et al. (2014, 2015) present the 

application of two covariables when analyzing maximum flows, using an 
index related to the extension of the urban area in the basin to model 

the trend and a climate index based on the PMD of return period 100 
years of each year, occurred in the basin to reproduce the variability of 

flows. 
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