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Abstract 

Reference evapotranspiration (ETo) is an agro-meteorological parameter of 

great importance for many areas of study such as geotechnics, climatology 

and hydrology, where its greatest importance falls in the calculation of the 

crop’s evapotranspiration (ETc). In this study, using only temperature data, 

the performance of three artificial intelligence models and two conventional 

equations to predict the reference evapotranspiration (ETo) was evaluated in 

a warm sub-humid climate in México. The artificial intelligence models 

evaluated were: support vector machines (SVM), Gene Expression 

Programming (GEP) and XGBoost, and the conventional models were those by 

Hargreaves-Samani and Camargo. The performance of the models was 

evaluated according to the statistical indexes: Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), Coefficient of Determination (R2) and Mean 

Bias Error (MBE). Confidence intervals were constructed for each statistical 

index using the technique of bootstrap resampling with the purpose of 
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evaluating their uncertainty. The results show that among the conventional 

models evaluated, the equation by Camargo obtained a better performance in 

the estimation of ETo compared to the equation by Hargreaves. Regarding the 

artificial intelligence models, the SVM model obtained the best performance 

among the techniques evaluated. In general, it is recommended to use the 

SVM model to estimate the ETo values since it outperforms the other 

techniques. 

Keywords: Reference evapotranspiration, artificial intelligence techniques, 

automated weather stations, bootstrap.  

 

Resumen 

La evapotranspiración de referencia (ETo) es un parámetro agro-

meteorológico de gran importancia para muchas áreas de estudio como la 

geotecnia, climatología e hidrología, donde su mayor importancia recae en el 

cálculo de la evapotranspiración de cultivo (ETc). En el presente estudio, 

utilizando solamente datos de temperatura, se evaluó el desempeño de tres 

modelos de inteligencia artificial y dos ecuaciones convencionales para 

predecir la evapotranspiración de referencia (ETo) en un clima cálido 

subhúmedo en México. Los modelos de inteligencia artificial evaluados fueron 

máquinas de soporte vectorial (SVM), programación de expresión genética 

(GEP) y XGBoost, así como los modelos convencionales de Hargreaves- 

Samani y Camargo. El desempeño de los modelos se evaluó de acuerdo con 

los índices estadísticos error absoluto medio (MAE); raíz cuadrada media del 

error (RMSE); coeficiente de determinación (R2), y el error medio de sesgo 

(MBE). Se construyeron intervalos de confianza para cada índice estadístico 
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utilizando la técnica de remuestreo bootstrap, con el propósito de evaluar la 

incertidumbre de los mismos. Los resultados demuestran que entre los 

modelos convencionales evaluados la ecuación de Camargo obtuvo un mejor 

desempeño en la estimación de la ETo en comparación con la ecuación de 

Hargreaves. Respecto a los modelos de inteligencia artificial, el modelo SVM 

obtuvo mejor desempeño entre las técnicas evaluadas. De manera general, se 

recomienda utilizar el modelo SVM para estimar valores de ETo al superar a 

las demás técnicas.  

Palabras clave: evapotranspiración de referencia, técnicas de inteligencia 

artificial, estaciones meteorológicas automatizadas, bootstrap. 
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Reference evapotranspiration (ETo) is an agro-meteorological parameter of 

use in many study areas such as geotechnics, climatology and hydrology, 

where its greatest importance lies in the calculation of evapotranspiration of 

the crop (ETc) for the determination of water requirements in agricultural crops 

(Čadro, Uzunović, Žurovec, & Žurovec, 2017; Jovic, Nedeljkovic, Golubovic, & 

Kostic, 2018; Webb, 2010; Zhang, Gong, & Wang, 2018). The ETo is defined 

as the “rate of evapotranspiration of a hypothetical reference surface that 

presents specific characteristics” (Allen, Pereira, Raes, & Smith, 1998). The 

exact calculation is performed by using the standard equation of FAO 56 

Penman-Monteith (ETo-FAO56PM) (Shiri, 2017); however, the equation 

requires four meteorological variables such as solar radiation, relative 

moisture, wind speed and temperature, which many times are not measured 

in weather stations, which is why on many occasions it is decided to use the 

equations that use less meteorological variables, which are classified 

depending on the availability of variables (Fan et al., 2018a; Feng, Cui, Zhao, 

Hu, & Gong, 2016; Shiri, 2017). One of the main reasons of use of 

conventional equations is that they require a lower number of meteorological 

variables for their implementation, and those based on the parameter of air 

temperature are the least accurate. In a study carried out by Almorox, 

Senatore, Quej and Mendicino (2018), the performance of the PMT (Penman-

Monteith) method was evaluated and the results were compared with those 

obtained with the Hargreaves–Samani (HS) equation using monthly data 

measured in the long term from the set of global climate data from FAO New 

LocClim. For a complete database, the approximate expression of PMT using 

only air temperature produces better results than the method of the non-

calibrated HS equation, and the performance of the PMT method which 
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performs even better by adopting corrections depending on the type of climate 

for the estimation of solar radiation, especially in the tropical climate. 

 Antonopoulos and Antonopoulos (2017) used the artificial intelligence 

technique of artificial neural networks (ANN) and the methods by Priestley-

Taylor, Makkink (MAK), Hargreaves and mass transference to estimate the 

reference evapotranspiration with daily meteorological data in a period of five 

years (2009-2013) in northern Greece. As a result, it was observed that when 

using limited entry variables for the adjustment of the parameters of the ANNs, 

the data result in inaccurate ETo values. On the other hand, the methods based 

on solar radiation by Priestley-Taylor and Makkink correlated correctly with the 

Penman-Monteith method followed by the Hargreaves method. The mass 

transference method was correlated satisfactorily, but it underestimated the 

ETo values. 

 Recent studies in the determination of the ETo mention the techniques 

known as artificial intelligence or soft-computing, based on automated 

learning. These techniques have been widely used in hydrological modelling, 

and in the estimation of ETo they have shown superiority over conventional 

equations, because they increase the accuracy of the estimations using few 

variables (Mehdizadeh, 2018). 

 The artificial intelligence technique called Gene Expression 

Programming (GEP) suggests an alternative approach, which generates 

algorithms and/or expressions to solve problems automatically, and where 

they have been applied recently with good results in hydrological studies 

(Mattar, 2018). Mattar and Alazba (2019) estimated the reference 

evapotranspiration using Gene Expression Programming (GEP) and Multiple 
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Linear Regression (MLR) with data collected from stations in Egypt, the results 

show that the GEP technique, when supplemented with the data of the variable 

temperature, obtained better performance than the MLR model and other 

conventional equations (HS and MAK). In another study to evaluate the 

performance of some artificial intelligence techniques, Wen et al. (2015) 

evaluated the use of the support vector machine (SVM) to model daily 

reference evapotranspiration (ETo) using limited climate data. For the SVM, 

four combinations of maximum temperature of the air (Tmax), minimum 

temperature of the air (Tmin), wind speed (U2) and daily solar radiation (Rs) 

were used, in the extremely arid region of the watershed of Ejina, China, as 

entries of Tmax and Tmin in the set of database. The results from the SVM models 

were evaluated comparing the exit with the ETo calculated with the Penman 

Monteith FAO 56 equation (PMF-56), the accuracy of the SVM method was 

compared with that of the artificial neural network (ANN), and with three 

conventional models, including Priestley-Taylor, Hargreaves and Ritchie. The 

results showed that the yield from the SVM method was the best among these 

models. 

 Recently, a new algorithm has been proposed called XGBoost (Extreme 

Gradient Boosting) which results from an improved version of the increase in 

gradient (Gradient Boosting), with a higher efficiency in calculation and 

capacity to solve problems of excessive adjustment (Fan et al., 2018a). Fan 

et al. (2018b) evaluated the potential to estimate the ETo of the models of 

assembly algorithms based on trees; random forests (RF), M5 tree model, 

increase of gradient (GBDT), increase of extreme gradient (XGBoost), support 

vector machines (SVM), and extreme learning machines (ELM); the results 

showed that the XGBoost and GBDT models reached excellent accuracy and 
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stability in comparison to the SVM and ELM models but with lower 

computational costs; under these criteria, the authors recommend the use of 

these models to estimate the ETo. 

Considering that the meteorological variable of air temperature is the 

one of highest availability, this study has the objective of (1) evaluat ing the 

capacity of three methods of artificial intelligence called XGBoost, GEP and 

SVM to estimate values of ETo using data of air temperature and (2) comparing 

the results with two conventional equations based on temperature called 

Hargreaves-Samani and Camargo under a warm sub-humid climate.  

 

 

Materials and methods 

 

 

Study site 

 

 

This study was carried out using data from automated weather stations (AWS) 

located in the state of Campeche, Mexico (Figure 1). The predominant climate 

is warm sub-humid, which is seen in 92 % of the territory and 7.75 % presents 

warm humid climate, localized in the eastern part of the state, and in the 

northern part a percentage of 0.05 % with semi-dry climate. The highest 
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temperature is over 30 °C and the lowest 18 °C. The mean annual temperature 

is 26 to 27 °C. The rainfall is abundant to very abundant during the summer. 

The total annual precipitation ranges between 1 200 and 2 000 mm, and in 

the northern region, of semi-dry climate, it is around 800 mm annually (INEGI, 

2017). 

 

 

Figure 1. Location of the weather stations in the state of Campeche 

(Mexico) used in this study. 

 

 The databases for every 10 min were obtained from the automated 

weather stations of the National Water Commission (Comisión Nacional del 

Agua, Conagua) in Mexico. Table 1 shows the geographic information of the 

weather stations used in this study, as well as the periods of registry time from 

each weather station.  
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Table 1. Geographic information and meteorological annual conditions 

during the study period. 

 

Station 

LAT  

(°N) 

LON 

(°W) 

ALT 

(msn

m) 

Years of 

registry 

Annual average  

Tmean 

(°C) 

GSR 

MJ M-2d-1 

RH 

(%) 

U2 

(ms-1) 

Calakmul 18.365 89.893 28 2000-2018 26.20 15.66 81.00 1.16 

Campeche 19.836 90.507 3 2000-2018 26.80 20.19 79.90 1.82 

Cd. del 

Carmen 

18.658 91.765 4 2011-2018 27.10 19.40 75.16 2.36 

Escárcega 18.608 90.754 60 2004-2018 27.17 18.74 79.2 1.51 

Los Petenes 19.943 90.374 2 2012-2018 26.52 14.43 80.23 1.31 

Monclova 18.057 90.821 100 2008-2018 26.70 18.77 72.59 1.63 

LAT: Latitude; LON: Longitude; ALT: Altitude; Tmean: Mean temperature; GSR: Global solar 

radiation; RH: Relative humidity; U2 wind speed. 

 

 

Management of missing data and quality 

 

 

The databases were processed every 10 minutes, detecting missing series of 

time through algorithms implemented in the Microsoft Excel® software, which 

were later refilled using the interpolation technique called Piecewise Cubic 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

Hermite Interpolating Polynomial (PCHIP). For a more detailed description, see 

Salazar, Ureña and Gallego (2010), and Torrente-Cantó (2018). Once the data 

series were completed, daily databases were constructed. Likewise, the data 

were analyzed to identify atypical values, where the values above three 

standard deviations of the mean were marked as atypical. The data signaled 

as atypical were analyzed, and if an atypical extreme inferior value was 

associated to a rainfall event it was not eliminated; on the contrary case, it 

was eliminated, with the objective of having functional models even during 

rainy season. In the case of the atypical extreme superior values, they were 

eliminated; in both cases the technique of PCHIP interpolation was used to 

complete them. Figure 2 shows the box and whisker plots of the weather 

stations implied in the models of this study. The whisker represents the 

minimum and maximum of the variables. Concerning the maximum 

temperature, the mean varies between 33 and 34 °C with maximum values 

between 42 and 43 °C (except the station of Cd. del Carmen), the minimum 

value of the maximum temperature ranges between 22 and 25 °C. The 

minimum temperature has a mean between 20 and 24 °C, with maximum 

values between 25 and 28 °C and minimum between 12 and 17 °C. Figure 2 

also shows the atypical values, generally associated to the minimum 

temperature. 
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Figure 2. Box and whisker plots of the temperature variable in the weather 

stations analyzed. 

 

 

FAO 56 PM (ETo-FAO56PM) equation 

 

 

 The FAO56PM equation is the standard model used to estimate accurately the 

ETo, proposed by the Food and Agriculture Organization of the United Nations 

(FAO). It incorporates thermodynamic and aerodynamic aspects, taking into 

consideration many meteorological parameters related to the process of 

evapotranspiration such as net radiation, air temperature, vapor pressure 
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deficit, and wind speed. It has been shown to be a relatively accurate method 

under different conditions or regions (Allen et al., 1998). These aspects have 

been incorporated into the following equation: 

 

𝐸𝑇𝑜 =
0.408∆(𝑅ₙ−𝐺)+ γ

900

𝑇𝑚𝑒𝑑 +273
𝑢2 (𝑒𝑠−𝑒𝑎 ) 

∆+γ(1+0.34𝑢2)
      (1) 

 

where Rn = net radiation on the surface (MJ m-2 day-1); G = heat flow of the 

soil (MJ m-2 day-1); Tmed = mean temperature of the air at 2 m of height (°C); 

u2 = wind speed at 2 m of height (m s-1); es = vapor pressure at saturation 

(kPa); ea = real vapor pressure (kPa); ∆ = slope of the vapor pressure curve 

(kPa °C-1); γ = psychrometric constant (kPa °C-1).  

In this study, the ETo-FAO56PM method was used to evaluate the 

conventional and artificial intelligence methods. 

 

 

Hargreaves and Samani Equation 

 

 

The HS model is considered an alternative model to estimate the ETo when 

only the temperature records are available in the study site; it is one of the 

methods that has been used consecutively because of its simple 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

implementation and the accuracy of its results (Gong et al., 2016; Shiri, 2017). 

Equation (2) of the Hargreaves and Samani model is structured as follows:  

 

𝐸𝑇𝑜 = 0.408 𝐾𝐻𝐺  (𝑇𝑚𝑒𝑑  +  17.8)(𝑇𝑚𝑎𝑥  −  𝑇𝑚𝑖𝑛)0.5𝑅𝑎    (2) 

 

where ETo = Reference evapotranspiration (mm day-1); KHG = is an empirical 

coefficient, which was initially established at 0.0023 but has been recalibrated 

according to the place used; Tmed = mean temperature; Tmax = maximum 

temperature; Tmin = minimum temperature; Ra = extraterrestrial solar 

radiation. Ra was calculated in function of the day of the year, the site’s 

latitude, and the solar angle according to the equation proposed by Allen et al. 

(1998).  

 

 

Camargo equation 

 

 

The Camargo model is a modification of the Thornthwaite (TH) equation; it is 

a model based on the climate variable of temperature. Camargo substituted 

the value of the mean temperature of the Thornthwaite equation by the mean 

effective temperature (Tef) (Camargo, Marin, Sentelhas, & Picini, 1999). 

Equation (3) of the Camargo model is structured in the following way: 
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𝐸𝑡𝑜 = 𝐾𝐶𝐴1 ∗ (10 ∗ (𝐾𝐶𝐴2 ∗ (3𝑇𝑚𝑎𝑥  − 𝑇𝑚𝑖𝑛 ))/𝐼)ᵃ ∗ 𝑁/360   (3) 

 

where ETo = reference evapotranspiration (mm day-1); KCA1 and KCA2 = 

empirical coefficients, where their original values are 16 and 0.36, 

respectively, and should be calibrated according to the place of use; I = annual 

heat index; a= empirical exponent in function of I, N = maximum hours of 

sunshine; (KCA2 * (3Tmax-Tmin) = effective temperature, replacing the mean 

temperature in the Thornthwaite equation. The value of I is defined as the sum 

of 12 values of monthly heat indexes, as shown in the following equation: 

 

𝐼 = ∑ (𝑇𝑚𝑒𝑑𝑗 /5)
1.51412

𝑛=1         (4) 

 

where Tmedj = mean monthly temperature (°C).  

 

and: 

 

𝑎 = 6.751 ∗ 10−7 ∗ 𝐼3 − 7.711 ∗ 10−5 ∗ 𝐼2 + 1.792 ∗ 10−2 ∗ 𝐼 + 0.492   (5) 

 

The value of a ranges from 0 to 4.25, while the annual heat index I 

varies from 0 to 160. 
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Parameter adjustment in conventional methods 

 

 

The conventional methods based on temperature should be adjusted to the 

local conditions before being used (Almorox et al., 2018) to obtain good 

estimations of ETo; therefore, the original coefficients of the equations were 

calibrated by using non-linear regression techniques through the Levenberg–

Marquardt algorithm. 

 

 

Support Vector Machines (SVM) 

 

 

The technique of support vector machines (SVM) was developed by Vapnik 

(2000) and is one of the approaches based on automated learning. It is a 

robust supervised learning technique to solve classification and regression 

problems applied to large sets of complex data with noise; it selects a unique 

hyperplane of separation of each class and the basic idea is to map the data x 

in a space of characteristics of high dimension through non-linear mapping and 

to make a linear regression in this space. During training, only the examples 

found in the margin of separation are considered, called support vectors. They 

are applied successfully in regression problems, general ly called SVR (support 

vectors regression), using SVM for a set of data {(Xi, Y i)} N/i = 1, where Xi is 
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the entry vector, Y i is the exit value, and N is the total number of sets of data 

through mapping of X in a characteristic space through a non-linear function 

φ(x) to later find a regression function ( Fan et al., 2018a; Mehdizadeh, 

Behmanesh, & Khalili, 2017; Quej, Almorox, Arnaldo, & Saito, 2017; Topi & 

Vanita, 2017; Wen et al., 2015): 

 

𝑓 (𝑥) =  𝜔𝜑(𝑥) +  𝑏        (6) 

 

where φ (x) is the function of non-linear mapping. ω is a weight vector and b 

is a bias value, they are the parameters of the regression function, which can 

be calculated by minimizing the following function of regularized risk:  

 

𝑅 (𝐶) = 𝐶 ∑ 𝐿𝜀
𝑁
𝑖  (𝑓 ( 𝜒𝑖),𝑦𝑖) 

1

2
 ‖𝜔‖²       (7) 

 

where the term 
1

2
 ‖𝜔‖² improves the generalization of the SVM model, 

normalizing the degree of complexity of the model; C is a parameter of positive 

compensation that determines the degree of error in the problem of 

optimization chosen by the user; (ε) is the loss function by Vapnik (size of the 

tube of the SVM model) and is defined as: 

 

𝐿𝜀 (𝑓 ( 𝜒𝑖),𝑦𝑖) = {
0 𝑓𝑜𝑟|𝑓 (𝑥𝑖) − 𝑦𝑖|  ≤  𝜀 

|𝑓 (𝑥𝑖) − 𝑦𝑖| − 𝜀 𝑜𝑡𝑟𝑎 𝑚𝑎𝑛𝑒𝑟𝑎
     (8) 
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That is, if the difference between predicted and measured values is less 

than ε, then the loss is equal to 0. If the predicted values are inside the tube, 

the loss error is equal to 0. For the rest of the predicted points found outside 

the tube, the loss is equal to the difference between the predicted value and 

the radius ε of the tube. For the detection of atypical values, the width values 

ξ and ξ ⃰, measure from top to bottom in the tube of ε.  

Because both variables acquire positive values, the risk should be 

minimized with the following equation: 

 

𝑅 (𝜉,𝜉∗, ω, 𝑏) =  
1

2
 ‖𝜔‖2 + 𝐶 ∑ (𝑛

𝑖=1 𝜉𝑖  +  𝜉𝑖
∗)      (9) 

 

Subject to {

𝑦𝑖  −  𝜔𝜙(𝑥𝑖) − 𝑏𝑖  ≤  𝜀 + 𝜉𝑖  

𝜔𝜙(𝑥𝑖) + 𝑏𝑖  −  𝑦𝑖  ≤ 𝜀 + 𝜉𝑖
∗

𝜉, 𝜉𝑖
∗ ≥ 0 

 

 

where 𝐶 ∑ (𝑛
𝑖=1 𝜉𝑖  + 𝜉𝑖

∗) control the degrees of empirical risk. 

The SVM model estimates the regression in function of a series of Kernel 

functions, which convert original entry data of smaller dimensions to a space 

of characteristics of larger size in an implicit way. Among the most used 

Kernels, there is polynomial SVM (SVM-Poly) and the radial base function 

(SVM-RBF), whose Kernel parameters ought to be adjusted previously through 

an algorithm. For example, the optimal Kernel parameters and the SVM model 

are generally obtained using the grid search method (Mehdizadeh et al., 

2017): 
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𝐾 (𝑥𝑖 ,𝑥𝑗) = exp(−𝛾 ‖𝑥𝑖  −  𝑥𝑗‖
2
) , 𝛾 > 0     (10) 

 

 

Implementation of the SVM Model in Estimating the ETo 

 

 

In this study, the SVM model to estimate the ETo was built by using the R 

software (RDevelopment, 2009). As entry variables, the meteorological data 

of Tmax, Tmin and Ra, were used, and as target variable the values of ETo-

FAO56PM (Eq.1). For training and validation of the SVM model, the R software 

was used together with the LIBSVM 3.1 package (Chang, Lin, & Tieleman, 

2013). The Kernel Radial Base Function (RBF) was used (Eq. 10) to resize the 

data. With the aim of avoiding the over-adjustment and increasing the 

performance of the SVM model to estimate the ETo, the parameters ε, C and 

ɣ of the SVM, and the Kernel Radial Base Function were optimized through the 

genetic algorithm (GA), using cross-validation (CV= 5 folders) (Quej et al., 

2017; Shrestha & Shukla, 2015), and varying the parameters ε = 0.002 to ε 

= 2, C = 0.0001 to C = 10, and ɣ = 0.0001 to ɣ = 2. The GA was implemented 

using the R software together with the e1079 and Caret library; 60 % of the 

data were used during the stage of training and 40 % in the stage of validation. 

The parameters optimized by the GA used in the training of SVM are 

shown in Table 2. 
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Table 2. Optimal SVM parameters obtained through GA. 

Station/ID model Optimal values 

Cost (C) Gamma (Ɣ) Epsilon (ϵ) 

Calakmul  1.471 0.334 0.147 

Campeche 3.752 0.535 0.344 

Cd. del Carmen 3.547 0.147 0.410 

Escárcega 5.995 0.285 0.229 

Monclova 8.223 0.069 0.255 

Los Petenes 7.837 0.269 0.147 

 

 

Genetic Expression Programming (GEP) 

 

 

Genetic expression programming (GEP) was presented by Ferreira (2001). It 

is a branch of the evolutionary algorithms that has the capacity of modelling 

dynamic and nonlinear processes. It is an algorithm that belongs to the family 

of traditional genetic algorithm (GA) and genetic programming (GP). It can 

emulate biological evolution based on computer programming to solve a 

problem defined by the user. 
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GEPs are considered a hybrid between GA and GP. They use genetic 

programming for the solution of the problem in tree shape, where there are 

two types of nodes:  

 Terminal or tree leaves. They do not have descendants, and they are 

associated to the variables or constants. 

 Functions. They have descendants, and they are associated to operators 

of the algorithm that is attempted to be developed. 

In GEP, individuals are codified first as linear chains of fixed length as in 

GA. Then, they are expressed as nonlinear entities of different sizes and 

shapes, as in GP (Ferreira, 2001). In addition, a set of terminals (coefficients 

and predictors), functions and mathematical operators are used in the GEP to 

estimate the dependent variable (Mehdizadeh et al., 2017), creating functions 

randomly and selecting those that present a better adjustment to the 

experimental results, allowing the generation of algorithms and mathematical 

expressions automatically for the solution of problems (Mattar, 2018; Shiri, 

2017).  

 

 

Implementation of the GEP model in the estimation of the 

ETo 
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In this study the implementation of the GEP technique was carried out by using 

the GenexprooTols V. 5.0 software, the entry variables are values of 

meteorological data of Tmax, Tmin, Ra and ETo-FAO56PM values as target 

variable. The arithmetic operators and mathematical functions implemented in 

the program were {+,−,×,÷, √𝑥, √𝑥3 ,  𝑥2,𝑥3, 𝐼𝑛(𝑥),𝑒ᵡ, sin(𝑥) , cos(𝑥) , 𝐴𝑟𝑐𝑡𝑎𝑛(𝑥)}, 

recommended for hydrological studies ((Mattar, 2018; Mehdizadeh et al., 

2017; Shiri, 2017). Of the data, 70 % were used for the stage of training and 

30 % for the validation, using cross-validation (CV =5 folders) to avoid over-

adjustment. The GEP parameters used in this study are shown in Table 3 (Shiri 

et al., 2014). 

 

Table 3. Parameters of the GEP model. 

Parameter Value 

Number of chromosomes  30 

Size of head 8 

Number of genes 3 

Function of link Addition 

Type of error in the fitness function RMSE 

Rate of mutation 0.044 

Rate of investment  0.1 

Rate of first point recombination  0.3 

Rate of second point recombination  0.3 
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Rate of gene recombination 0.1 

Rate of gene transposition 0.1 

Rage of insertion sequence transposition  0.1 

Root Insertion Sequence Transposition  0.1 

Penalization tool Pp* 

*Parsimony pressure. 

 

 

XGBoost 

 

 

It is one of the most important and potent algorithms of “Machine Learning” 

created by Chen and Guestrin (2016), used for the analysis of regression 

problems and statistical classification, which produces a complex prediction 

model from the assembly of decision trees (simple models), in a context of 

supervised learning. 

The model is based on the theory of slope increase, which is why 

predictions of several “weak” apprentices (models whose predictions are 

slightly better than random assumptions), are combined to develop a “strong” 

apprentice. These “weak” apprentices are combined by following a strategy of 

gradual learning, avoiding over-adjustment and optimizing computer 

resources. This is obtained by simplifying all the functions that allow combining 
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predictive and regularization terms, but which at the same time maintain an 

optimal computational speed during the whole processing. At the beginning of 

the calibration process, a “weak” apprentice is adjusted to the entire data 

space, and then, a second apprentice is adjusted to the residues of the first. 

This adjustment process of a model to the residues of the previous one 

continues until some stoppage criterion is reached (minimization of the root-

mean-square error). The result is a type of weighed mean of individual 

predictions of each weak student. Traditionally, the regression trees are 

selected as “weak” apprentices (Fan et al., 2018a). Under this context the 

XGBoost model is based in the following objective function: loss + regulator: 

 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 ,
𝑛
𝑖=1  ŷ𝑖) +  ∑ Ω𝑡

𝑖=1  (𝑓𝑖)      (11) 

 

where 𝑙 is the predictive term and Ω the regularization term. The loss function 

of the predictive term can be specified by the user. The regularization term is 

obtained as an analytical expression based on the number of tree leaves and 

the punctuation of each leaf. The key point of the XGBoost calibration process 

is that both terms are reordered in the last instance in the following 

expression: 

 

𝑂𝑏𝑗(𝑡) = −
1

2
 ∑

𝐺𝑗
2

𝐻𝑗+ 𝜆
+ γT𝑇

𝑖=1        (12) 

 

where G and H are obtained from the expansion of the Taylor series of the loss 

function, λ is the regularization parameter, and T is the number of leaves in a 
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tree. This analytical expression of the target function allows a fast scanning 

from left to right of the possible divisions of the tree, but always taking into 

account the complexity. 

XGBoost has a broad range of adjustment parameters. In addition, the 

flexibility of the algorithm improves when giving the user the chance of 

including some auto-defined parameters, such as the loss function or the 

measurement used for validation and trial  Urraca, Antonanzas, Antonanzas-

Torres, & Martinez-De-Pison, 2017).  

 

 

Implementation of the XGBoost model in the estimation of 

the ETo 

 

 

For the implementation of the XGBoost model, as the first step, the hyper-

parameters were optimized: nrounds, max_depth, eta, gamma, colsample 

bytree, min_child_weight, and subsample (Table 4) using the Caret library of 

Software R (Fan et al., 2018a); second, the XGBoost model was adjusted using 

the “Xgboost” library of Software R, using cross-validation (CV = 5 folders) to 

avoid over-adjustment. Of the data, 70 % were used for the stage of training 

and 30 % for validation. The entry variables to the model are the values of 

meteorological data of Tmax, Tmin and Ra, the ETo-FAO56PM values as target 

variable. 
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Table 4. Optimized XGBoost hyper-parameters. 

Adjusted 

parameters 

 

Calak-

mul 

Campe-

che 

Cd. del 

Car-

men 

Escár-

cega 

Monclo-

va 

Los 

Pete-

nes 

Nrounds  50 50 50 50 150 50 

Max_depth  2 3 3 3 2 3 

Eta  0.3 0.3 0.3 0.3 0.3 0.3 

Gamma  0 0 0 0 0 0 

Colsample 

bytree  
0.8 0.8 0.8 0.8 0.8 0.8 

Min_child_wei

ght 
1 1 1 1 1 1 

subsample 1 1 1 1 0.75 1 

 

 

Statistical analysis 

 

 

Four statistical indicators are used in this study to evaluate the performance 

of conventional and artificial intelligence models; these indicators are: 
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coefficient of determination (R2; Eq. 13), root-mean-square error (RMSE; Eq. 

14), mean absolute error (MAE; Eq. 15), mean bias error (MBE; Eq. 16): 

 

𝑅2 =  
[∑ (𝑃𝑖−𝑃𝑎𝑣𝑔 )(𝑂𝑖−𝑂𝑎𝑣𝑔 )𝑛

𝑖=1
]²

∑ (𝑃𝑖−𝑃𝑎𝑣𝑔)²𝑛
𝑖=1

∑ (𝑂𝑖−𝑂𝑎𝑣𝑔 )²𝑛
𝑖=1

        (13) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛 
 ∑ (𝑃𝑖 − 𝑂𝑖)²

𝑛
𝑖=1         (14) 

 

𝑀𝐴𝐸 = 
1

𝑛 
 ∑ (|𝑃𝑖 − 𝑂𝑖 |

𝑛
𝑖=1 )         (15) 

 

𝑀𝐵𝐸 = 
1

𝑛 
 ∑ (𝑛

𝑖=1 𝑃𝑖 − 𝑂𝑖 )       

 (16) 

 

where n is the number of comparisons, Pi and Oi are estimated and observed 

values of ETo-FAO56PM, respectively. Pavg is the average of estimated values 

of ETo, Oavg is the average of observed values of ETo. The units of ETo are 

shown in mm d-1. 

R2 is commonly used to estimate the performance of hydrological 

models; it represents the fraction of estimated values that are the closest to 

the line of measurement data. Values of the coefficient of determination close 

to 1 indicate more efficient models and the regression line adjusts better to 

the data. The RMSE is a measurement used frequently to compare errors of 

prediction in different models, and the lower its value, the better the predictive 
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capacity of a model will be in terms of its absolute deviation. MAE is the sum 

of absolute values of the errors divided by the number of observations, and it 

is used frequently to measure how close the estimated values are to the 

observed values. The MBE provides information about the tendency of the 

model to overestimate or underestimate the variable, quantifying the 

systematic error of the model. 

The evaluation of uncertainty of statistical indicators R2, RMSE, MAE and 

MBE was carried out through the construction of bootstrap Intervals of 

Confidence (BIC) at 95 % of the level of trust, and for such a purpose the non-

parametric percentile bootstrap method was used as the technique of 

resampling using B = 10 000 replicas with replacement with the purpose of 

inducing more accuracy in the estimations (Efron, 1992). 

The BICs offer a way of estimating with high probability a range of values 

where the value of the parameter is found (statistical indicator). 

The standard error of the distribution (SE) and the value of each 

statistical bootstrap indicator were also computed, calculating the standard 

deviation and the mean of the B replicas. 

 

 

Results 
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In this study, two conventional equations were evaluated, and three artificial 

intelligence techniques to estimate the ETo using the air temperature variable. 

 Table 5 shows the statistical indexes obtained through bootstrap (mean 

of the bootstrap B replicas); between the conventional equations evaluated, 

the Camargo model showed better global results (R2 = 0.734, MAE = 0.564, 

RMSE = 0.721, MBE = -0.008) compared to the HS equation (R2 = 0.727, MAE 

= 0.588, RMSE = 0.750, MBE = -0.032), with the Monclova station presenting 

the best performance (R2 = 0.815; MAE = 0.488; RMSE = 0.608, MBE = -

0.011). Globally, the Camargo equation had a tendency to slightly 

underestimate the values of ETo according to the indicator MBE = -0.008. 

Regarding the Camargo equation, the KCA1 coefficient ranged from 34.922 to 

44.476, and the KCA2 coefficient varied from 0.195 to 0.290. In the HS 

equation, the calibrated KHS coefficient ranged from 0.0015 to 0.0027. 

  

Table 5. Bootstrap statistical indexes (R2, MAE, RMSE and MBE) of the 

conventional and artificial intelligence models used for the estimation of the 

ETo from each weather station. 

Station/ 

model 

R2 MAE 

(mm d-1) 

RMSE 

(mm d-1) 

MBE 

(mm d-

1) 

KHS KCA1 KCA2 

Calakmul 

HS 0.700 0.569 0.729 -0.055  0.0015   

Camargo 0.712 0.534 0.688  0.028  36.071 0.200 

SVM 0.740 0.486 0.646  0.046    
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GEP 0.696 0.544 0.719 -0.003    

XGBoost 0.771 0.467 0.607 -0.0004    

Campeche 

HS 0.703 0.550 0.709 -0.010  0.0020   

Camargo 0.635 0.623 0.797  0.037  40.256 0.218 

SVM 0.731 0.519 0.680 -0.003    

GEP 0.695 0.561 0.726  0.036    

XGBoost 0.695 0.543 0.721 -0.012    

Cd. del Carmen 

HS 0.694 0.633 0.820 -0.002  0.0027   

Camargo 0.702 0.627 0.811  0.005  44.476  0.240 

SVM 0.742 0.585 0.778 -0.056    

GEP 0.721 0.638 0.809 -0.034    

XGBoost 0.703 0.611 0.802  0.032    

Escárcega 

HS 0.711 0.654 0.825 -0.050  0.0018   

Camargo 0.783 0.554 0.705 -0.036  38.581  0.211 

SVM 0.838 0.471 0.608  0.034    

GEP 0.773 0.561 0.713  0.030    

XGBoost 0.815 0.500 0.642 -0.043    

Monclova  

HS 0.796 0.523 0.651  0.014  0.0020   

Camargo 0.815 0.488 0.608 -0.011  39.391  0.214 

SVM 0.852 0.426 0.531 -0.046    
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GEP 0.816 0.500 0.618  0.009    

XGBoost 0.842 0.442 0.569  0.025    

Los Petenes 

HS 0.755 0.599 0.767 -0.089  0.0014   

Camargo 0.754 0.555 0.716 -0.071  34.922  0.195 

SVM 0.801 0.392 0.574 -0.042    

GEP 0.812 0.406 0.574 -0.022    

XGBoost 0.804 0.414 0.584  0.041    

All the stations 

HS 0.727 0.588 0.750 -0.032    

Camargo 0.734 0.564 0.721 -0.008    

SVM 0.784 0.480 0.636 -0.011    

GEP 0.752 0.535 0.693  0.003    

XGBoost 0.772 0.496 0.654  0.007    

* In the artificial intelligence models, the bootstrap statistical indexes correspond to those 

obtained in the validation process. 

** KHS, KC A 1, KC A2 are the empirical coefficients adjusted of the Hargreaves-Samani and 

Camargo equations, respectively. 

  

 Concerning the artificial intelligence models to estimate the ETo, Table 5 

shows that the SVM model obtained the best performance with relation to the 

other models evaluated, obtaining values of R2 = 0.784, MAE = 0.480, RMSE 

= 0.636 and MBE = -0.011, with the Monclova station being the one that 

showed the best performance (R2 = 0.852; MAE = 0.426; RMSE = 0.531; MBE 

= -0.046); followed by the XGBoost model with results of R2 = 0.772, MAE = 
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0.496, RMSE = 0.654 and MBE = 0.007, where the Monclova station presented 

the best performance (R2 = 0.842; MAE = 0.442; RMSE = 0.569; MBE = 

0.025); the GEP model was the one of lowest yield compared to the other 

artificial intelligence models, obtaining results of R2 = 0.752, MAE = 0.535, 

RMSE = 0.693 and MBE = 0.003, although their yield was higher than the one 

obtained by conventional equations.  

 The SVM model presented in general a tendency to underestimate values 

of ETo according to a global value of MBE=-0.011, while the GEP and XGBoost 

models presented a mild tendency to overestimate the values of ETo. 

 The SVM model has a good yield when the adjustment of the parameters 

of Cost, Gamma and Epsilon is done, using the Genetic Algorithm. Likewise, 

when using cross-validation the over-adjustment of the model is avoided. 

 One of the main advantages of the SVM method over the other methods 

lies in the non-linear problem always converging in a global minimum. On the 

other hand, a useful characteristic of the GEP technique is that it provides an 

algebraic expression to estimate the ETo, which can be programmed in a 

spreadsheet, or R, Matlab or Python software. Table 6 presents the algebraic 

expressions obtained for the GEP model for the six weather stations.  

 

Table 6. Algebraic expressions obtained by the GEP model for each weather 

station. 

Station Mathematical expression  
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Calakmul 
𝐸𝑇𝑜 =

𝑇𝑚𝑎𝑥

√(0.815 ∗ 𝑇𝑚𝑎𝑥
3

+
Arctan(𝑇𝑚𝑎𝑥) ∗ (−9.223)

Arctan(𝑅𝑎 − 5.126)

+
𝑅𝑎

Arctan(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 − log(𝑅𝑎 + 𝑇𝑚𝑖𝑛)
 

 

Campeche 

𝐸𝑇𝑜 = 𝑒𝑥𝑝[cos(√𝑇𝑚𝑎𝑥)9]+ 𝑒𝑥𝑝

[
 
 
 

√cos(√
1.707

𝑇𝑚𝑖𝑛

+ 𝑅𝑎) ³

]
 
 
 

+ cos [
(
1.707
𝑇𝑚𝑖𝑛

)+ 𝑇𝑚𝑎𝑥

√(𝑇𝑚𝑎𝑥)3
] 

 

Cd. del 

Carmen 
𝐸𝑇𝑜 = √(

𝑅𝑎−(𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛 )∗𝑠𝑖𝑛(𝑇𝑚𝑎𝑥)

𝑅𝑎
) + 𝐴𝑟𝑐𝑡𝑎𝑛[(−3.589∗ 8.418)+ 𝑇𝑚𝑎𝑥 −

√𝑇𝑚𝑖𝑛 + 𝑙𝑜𝑔(𝑇𝑚𝑎𝑥 − 7.291)]+ 𝑠𝑖𝑛 [
(𝑅𝑎∗−3.589)−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − √7.291+𝑇𝑚𝑖𝑛
3 ]  

Escárcega 
𝐸𝑇𝑜 = log(

7.347

√𝑇𝑚𝑖𝑛
27

) + (
𝑅𝑎 ∗ √6.801

3

7.347 − 9.023 + 𝑇𝑚𝑎𝑥

) + (
𝑅𝑎 ∗ √𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

7.3472 − 𝑇𝑚𝑎𝑥

) 

 

Monclova 
𝐸𝑇𝑜 = −13.981 + √2𝑅𝑎

3
+ 

𝑇𝑚𝑎𝑥

√
𝑇𝑚á𝑥

𝑇𝑚𝑖𝑛
0.611 + 𝑅𝑎

3

+ √√𝑅𝑎
6

+ √−3.443+ 𝑅𝑎
33
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Los Petenes 

𝐸𝑇𝑜 = log(log(log(4.244 + 𝑇𝑚𝑎𝑥) + 𝑇𝑚𝑎𝑥
27 + (

√2𝑅𝑎3

log(
𝑇𝑚𝑎𝑥
𝑇𝑚𝑖𝑛

)
)

+ log(

𝑅𝑎
4.244³

∗ 𝑅𝑎

𝑇𝑚𝑖𝑛

) 

 

As a practical example of the GEP model, the formula is provided in the 

Microsoft Excel® format, whose entries correspond to the variables of Tmin, 

Tmax, Ra.  

 

B2 / ((M2*Tmax) ^ (1/3)) + (ATAN(Tmax) * M3) / (ATAN(Ra-M4)) + Ra / 

(ATAN((Tmax-Tmin)-LOG(Ra)) +Tmin) 

 

where M2= 0.0815; M3 = 9.223; M4 = 5.126 are constants in the model.  

Thus, it is verified that when adding the values of Tmax=31.7, Tmin=18.40 

and Ra= 38.87, we will obtain the value of ETo = 3.407 mm d-1.  

Table 7 shows the bootstrap intervals of confidence (BIC) at 95 % level 

of confidence and standard error of distribution (SE) of the statistical indexes 

R2, MAE, RMSE and MBE of the conventional and artificial intelligence models. 

In general, the intervals of confidence show reduced amplitude, related to the 

standard error, which indicates that if we use random samples and their 

statistical evaluation indicators are determined, these will vary in a range that 

is always acceptable, as shown in Table 7. 
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Table 7. BIC (inferior limit [IL] = 2.5% and superior limit [SL] = 97.5%) at 

95 % level of confidence and the Standard Error of distribution (SE) of the 

statistical indexes R2, MAE, RMSE and MBE of the conventional and artificial 

intelligence models. 

Station / 

model 

R2 MAE (mm d-1) RMSE (mm d-1) MBE (mm d-1) 

IL SL SE IL SL SE IL SL SE IL SL SE 

Calakmul 

HS 0.68

3 

0.71

7 

0.00

8 

0.55

4 

0.58

4 

0.00

7 

0.70

9 

0.74

8 

0.00

9 

-

0.079 

-

0.031 

0.012 

Camargo 0.69

6 

0.72

7 

0.00

7 

0.51

9 

0.54

8 

0.00

7 

0.66

9 

0.70

6 

0.00

9 

 

0.006 

 

0.049 

0.011 

SVM 0.71

5 

0.76

5 

0.01

3 

0.46

2 

0.51

1 

0.01

2 

0.61

5 

0.67

7 

0.01

6 

 

0.009 

 

0.083 

0.019 

GEP 0.66

7 

0.72

4 

0.01

4 

0.51

6 

0.57

2 

0.01

4 

0.68

2 

0.75

7 

0.01

9 

-

0.046 

 

0.039 

0.022 

XGBoost 0.75

7 

0.78

6 

0.00

7 

0.45

3 

0.48

2 

0.00

7 

0.58

9 

0.62

6 

0.00

9 

-

0.023 

 

0.023 

0.012 

Campeche 

HS 0.68

8 

0.71

7 

0.00

7 

0.53

7 

0.56

2 

0.00

6 

0.69

2 

0.72

6 

0.00

8 

-

0.029 

 

0.009 

0.009 

Camargo 0.61

7 

0.65

2 

0.00

8 

0.60

9 

0.63

6 

0.00

7 

0.77

8 

0.81

5 

0.00

9 

 

0.014 

 

0.059 

0.011 

SVM 0.70

7 

0.75

4 

0.01

1 

0.49

7 

0.54 0.01

1 

0.65

2 

0.70

8 

0.01

4 

-

0.036 

 

0.029 

0.017 

GEP 0.66

9 

0.72 0.01

3 

0.53

7 

0.58

4 

0.01

2 

0.69

4 

0.75

8 

0.01

6 

-

0.001 

 

0.073 

0.018 

XGBoost 0.66

2 

0.72

7 

0.01

6 

0.51

7 

0.56

9 

0.01

3 

0.68

2 

0.75

9 

0.01

9 

-

0.052 

 

0.028 

0.021 
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Cd. del Carmen 

HS 0.66

2 

0.72

6 

0.01

6 

0.60

3 

0.66

2 

0.01

5 

0.40

0 

1.24

1 

0.21

4 

-

0.049 

 

0.045 

0.024 

Camargo 0.67

1 

0.73

2 

0.01

6 

0.59

7 

0.65

6 

0.01

5 

0.77

0 

0.85

2 

0.02

1 

-

0.041 

 

0.052 

0.023 

SVM 0.69

2 

0.79

2 

0.02

5 

0.53

4 

0.63

7 

0.02

6 

0.70

0 

0.85

6 

0.03

9 

-

0.134 

 

0.021 

0.039 

GEP 0.67

5 

0.76

6 

0.02

3 

0.58

5 

0.69

1 

0.02

7 

0.74

2 

0.87

5 

0.03

4 

-

0.118 

 

0.050 

0.043 

XGBoost 0.63

9 

0.76

7 

0.03

2 

0.55

1 

0.67

2 

0.03

1 

0.71

8 

0.88

6 

0.04

3 

-

0.061 

 

0.125 

0.047 

Escárcega 

HS 0.69

5 

0.72

7 

0.00

8 

0.63

5 

0.67

3 

0.00

9 

0.80

2 

0.84

7 

0.01

2 

-

0.082 

-

0.018 

0.016 

Camargo 0.76

9 

0.79

6 

0.00

7 

0.53

7 

0.57

0 

0.00

8 

0.68

5 

0.72

4 

0.01

0 

-

0.063 

-

0.009 

0.014 

SVM 0.81

7 

0.85

9 

0.01

1 

0.44

5 

0.49

6 

0.01

3 

0.57

4 

0.64

2 

0.01

7 

-

0.006 

 

0.074 

0.021 

GEP 0.74

5 

0.80

0 

0.01

4 

0.53

0 

0.59

2 

0.01

5 

0.67

7 

0.74

9 

0.01

8 

-

0.018 

 

0.079 

0.025 

XGBoost 0.79

1 

0.83

8 

0.01

2 

0.47

0 

0.53

1 

0.01

5 

0.60

6 

0.67

8 

0.01

8 

-

0.093 

 

0.006 

0.025 

Monclova  

HS 0.78

1 

0.81

1 

0.00

7 

0.50

7 

0.53

9 

0.00

8 

0.63

2 

0.67

0 

0.00

9 

-

0.058 

-

0.004 

0.014 

Camargo 0.80

2 

0.82

9 

0.00

6 

0.47

3 

0.50

3 

0.00

7 

0.59

0 

0.62

6 

0.00

9 

-

0.036 

 

0.014 

0.013 

SVM 0.83

2 

0.87

1 

0.00

9 

0.40

3 

0.44

9 

0.01

2 

0.50

3 

0.55

8 

0.01

4 

-

0.084 

-

0.007 

0.019 
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GEP 0.79

2 

0.83

9 

0.01

2 

0.47

1 

0.52

8 

0.01

4 

0.58

5 

0.65

1 

0.01

6 

-

0.037 

 

0.056 

0.024 

XGBoost 0.81

8 

0.86

6 

0.01

2 

0.41

2 

0.47

2 

0.01

5 

0.53

2 

0.60

5 

0.01

8 

-

0.022 

 

0.072 

0.024 

Los Petenes 

HS 0.71

0 

0.80

0 

0.02

3 

0.56

4 

0.63

3 

0.01

7 

0.71

5 

0.81

8 

0.02

6 

-

0.144 

-

0.035 

0.027 

Camargo 0.71

0 

0.79

8 

0.02

2 

0.52

3 

0.58

8 

0.01

6 

0.66

5 

0.76

7 

0.02

6 

-

0.122 

-

0.019 

0.026 

SVM 0.72

4 

0.87

8 

0.03

9 

0.33

8 

0.44

6 

0.02

7 

0.46

3 

0.68

6 

0.05

7 

-

0.114 

 

0.030 

0.037 

GEP 0.73

8 

0.88

6 

0.03

7 

0.35

2 

0.46

0 

0.02

7 

0.46

3 

0.68

4 

0.05

6 

-

0.097 

 

0.054 

0.038 

XGBoost 0.74

2 

0.86

6 

0.03

2 

0.35

3 

0.47

3 

0.03

0 

0.49

4 

0.67

4 

0.04

6 

-

0.042 

 

0.123 

0.042 

 

 

 

Discussion 

 

 

Two conventional models and three artificial intelligence techniques used to 

estimate values of ETo were evaluated, with the entry variables for all the 

models being data of Tmax, Tmin and Ra, except for the Camargo model that 
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uses the maximum sunshine hours for a specific site, so that the models have 

a spatial and temporal scope of use, limited by thermal amplitude. 

In the case of arid and super humid climate where there is broader 

thermal amplitude, Camargo et al. (1999) presented a modification to the 

Thornthwaite model using the term “effective temperature” Tef = 0.36 (3 Tmax 

– Tmin), obtaining excellent results for super humid regions in Brazil. In this 

study, Camargo’s empirical equation obtained better estimations of ETo in 

comparison to the HS equation, the latter commonly used in the Yucatan 

Peninsula to estimate the ETo when there are only data for temperature, this 

because in the stations studied there is a greater thermal amplitude. Likewise, 

the calibration of the KHS coefficient of the HS equation agrees with the one 

obtained by Bautista, Bautista and Delgado-Carranza (2009) for some sites of 

the Yucatan Peninsula, where the highest value of the KHS coefficient = 0.0027 

was observed in the station of Cd. del Carmen surrounded by waters from the 

Gulf of Mexico, and the lowest values were observed in regions surrounded by 

abundant vegetation as in the cases of the biosphere reserves of Petenes (KHS 

= 0.0014) and Calakmul (KHS = 0.0015). Quej, Almorox, Arnaldo and Moratiel 

(2019) obtained similar results when evaluating the daily ETo using the HS 

and Camargo equations, obtaining values of RMSE of 0.70 and 0.80 mm d-1, 

respectively. Also, in a study carried out by Kelso-Bucio et al. (2013) in a 

regional study, the authors calibrated the empirical coefficient of the 

Hargreaves equation, obtained values of RMSE in the range of 0.68 to 0.87 

mm d-1 for the north and central region of the state of Campeche, Mexico, 

values similar to this study where the RMSE value in the HS equation had a 

variation of 0.651 to 0.820 mm d-1.  
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Among the artificial intelligence techniques evaluated to estimate the 

ETo, the SVM model using the radial base kernel presented better results, and 

GEP obtained the lowest yield out of the three techniques in both stages. This 

agrees with the results obtained by Mehdizadeh et al. (2017) in arid and semi-

arid regions of Iran where the GEP technique was implemented, two SVM 

models of radial base and polynomial; and MARS (Multivariate Adaptive 

Regression Spline) comparing it with 16 conventional equations based on mass 

transference, radiation and meteorological parameters; the results revealed 

that both MARS and SVM of radial base obtained better estimations than the 

rest of the artificial intelligence techniques and the conventional equations. On 

the other hand, the results from SVM and XGBoost techniques agree with a 

study carried out in China by Fan et al. (2018b), where some artificial 

intelligence methods were evaluated, SVM and XGBoost among them, and the 

results were obtained in the sub-humid climate using only air temperature 

data; the XGBoost technique obtained a value of RMSE = 0.723 mm d-1 and 

the SVM technique a value of RMSE = 0.717 mm d-1. 

Finally, the XGBoost technique had a performance close to SVM. 

However, the use of SVM of radial base is recommended since it is a more 

robust technique due to its strong mathematical bases, with less 

computational expense by not using the data for the calculation but rather 

some so-called support vectors, in addition to a technique with lower tendency 

to over-adjust once its parameters have been adjusted via GA algorithm. 
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Conclusions 

 

 

From the conventional equations evaluated based on temperature, the 

equation proposed by Camargo obtained better performance in the estimation 

of the ETo, which is why its use is recommended for warm sub-humid climates, 

as in the case of the study region. In both cases, the study provides calibrated 

coefficients both for stations that are located in sites close to the sea and in 

inland sites. 

Regarding the artificial intelligence models, the SVM model of radial base 

is recommended to carry out estimations of the ETo. 

The previous adjustment of the parameters of artificial intelligence 

models through algorithms is fundamental to avoid an over-adjustment that 

would affect future estimations using other series of data. 

On the other hand, it is important to highlight that the GEP models are 

also a good option at the moment of performing estimations of the ETo, since 

the algebraic model provided by the technique could be programmed in a 

spreadsheet or other software, and therefore carry out predictions; and as was 

shown in this study, the GEP model outperformed slightly the conventional 

models. 

The artificial intelligence models are an excellent option to estimate 

values of ETo since they outperform the conventional equations; however, 
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specialized knowledge on the use of software and execution of programming 

codes is required for their implementation. 

The models evaluated in this study can be used in regions of warm sub-

humid climate and in the ranges of temperature presented in Figure 2. 

In future studies the effect of relative humidity could be evaluated, as 

well as wind speed in the estimation of the ETo for different months of the 

year and under extreme conditions of rainfall. 

For the implementation of the artificial intelligence models described in 

this study, the use of the free software R is recommended; in case of requiring 

codes for its implementation, they can be requested via email to this study’s 

author. 

 

Acknowledgements 

We thank Consejo Nacional de Ciencia y Tecnología (Conacyt) and Colegio de 

Postgraduados Campus Campeche for the financial support given to carry out 

the Master’s studies on which this research is based. 

 

References 

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop 

evapotranspiration. Guidelines for computing crop water requirements. 

FAO Irrigation and drainage paper 56. Irrigation and Drainage, 300(9), 

D05109. 

Almorox, J., Senatore, A., Quej, V. H., & Mendicino, G. (2018). Worldwide 

assessment of the Penman-Monteith temperature approach for the 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

estimation of monthly reference evapotranspiration. Theoretical and 

Applied Climatology, 131(1-2), 693-703. Recovered from 

https://doi.org/10.1007/s00704-016-1996-2 

Antonopoulos, V. Z., & Antonopoulos, A. V. (2017). Daily reference 

evapotranspiration estimates by artificial neural networks technique and 

empirical equations using limited input climate variables. Computers and 

Electronics in Agriculture, 132, 86-96. Recovered from 

https://doi.org/10.1016/j.compag.2016.11.011 

Bautista, F., Bautista, D., & Delgado-Carranza, C. (2009). Calibration of the 

equations of Hargreaves and Thornthwaite to estimate the potential 

evapotranspiration in semi-arid and subhumid tropical climates for 

regional applications. Atmósfera, 22(4), 331-348. 

Čadro, S., Uzunović, M., Žurovec, J., & Žurovec, O. (2017). Validation and 

calibration of various reference evapotranspiration alternative methods 

under the climate conditions of Bosnia and Herzegovina. International Soil 

and Water Conservation Research, 5(4), 309-324. Recovered from 

https://doi.org/10.1016/j.iswcr.2017.07.002 

Camargo, A. P., Marin, F. R., Sentelhas, P. C., & Picini, A. G. (1999). Adjust of 

the Thornthwaite’s method to estimate the potential evapotranspiration 

for arid and superhumid climates, based on daily temperature amplitude 

[JOUR]. Revista Brasileira de Agrometeorologia, 7(2), 251-257. 

Chang, C., Lin, C., & Tieleman, T. (2013). LIBSVM : A library for support vector 

machines. ACM Transactions on Intelligent Systems and Technology 

(TIST), 307, 1-39. Recovered from 

https://doi.org/10.1145/1961189.1961199 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tre boosting system. KDD 

'16: Proceedings of the 22nd ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 19(6). Recovered from 

https://doi.org/10.1145/2939672.2939785 

Efron, B. (1992). Bootstrap methods: Another look at the jackknife. Recovered 

from https://doi.org/10.1007/978-1-4612-4380-9_41 

Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X.,… & Xiang, Y. (2018a). 

Comparison of support vector machine and extreme gradient boosting for 

predicting daily global solar radiation using temperature and precipitation 

in humid subtropical climates: A case study in China. Energy Conversion 

and Management, 164(January), 102-111. Recovered from 

https://doi.org/10.1016/j.enconman.2018.02.087 

Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X.,… & Xiang, Y. (2018b). 

Evaluation of SVM, ELM and four tree-based ensemble models for 

predicting daily reference evapotranspiration using limited meteorological 

data in different climates of China. Agricultural and Forest Meteorology, 

263, 225-241. Recovered from 

https://doi.org/10.1016/j.agrformet.2018.08.019 

Feng, Y., Cui, N., Zhao, L., Hu, X., & Gong, D. (2016). Comparison of ELM, 

GANN, WNN and empirical models for estimating reference 

evapotranspiration in humid region of Southwest China. Journal of 

Hydrology, 536, 376-383. Recovered from 

https://doi.org/10.1016/j.jhydrol.2016.02.053 

Ferreira, C. (2001). Gene Expression Programming: a New Adaptive Algorithm 

for Solving Problems. Arxiv.org. Recovered from 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

https://arxiv.org/abs/cs/0102027 

Gong, D., Feng, Y., Jia, Y., Cui, N., Li, C., & Zhao, L. (2016). Calibration of 

hargreaves model for reference evapotranspiration estimation in Sichuan 

basin of southwest China. Agricultural Water Management, 181, 1-9. 

Recovered from https://doi.org/10.1016/j.agwat.2016.11.010 

INEGI, Instituto Nacional de Estadística y Geografía. (2017). Anuario 

estadístico y geográfico de Campeche 2017. Recovered from 

https://doi.org/10.1111/j.1469-8749.2009.03468.x 

Jovic, S., Nedeljkovic, B., Golubovic, Z., & Kostic, N. (2018). Evolutionary 

algorithm for reference evapotranspiration analysis. Computers and 

Electronics in Agriculture, 150(April), 1-4. Recovered from 

https://doi.org/10.1016/j.compag.2018.04.003 

Kelso-Bucio, H., Ba, K. M., Magaña, H. F., Sánchez, M. S., Reyes, L. D., & 

Pascual, R. F. (2013). Recalibración regional de los coeficientes de 

Hargreaves (HE y KRS) en México. XXII Congreso Nacional de Hidráulica 

y 1er Congreso Internacional de Ingeniería Agrícola, México. 

Mattar, M. (2018). Using gene expression programming in monthly reference 

evapotranspiration modeling: A case study in Egypt. Agricultural Water 

Management, 198, 28-38. Recovered from 

https://doi.org/S0378377417304092 

Mattar, M. A., & Alazba, A. A. (2019). GEP and MLR approaches for the 

prediction of reference evapotranspiration. Neural Computing and 

Applications, 31(10), 5843-5855. Recovered from 

https://doi.org/10.1007/s00521-018-3410-8 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

Mehdizadeh, S. (2018). Estimation of daily reference evapotranspiration (ETo) 

using artificial intelligence methods: Offering a new approach for lagged 

ETodata-based modeling. Journal of Hydrology, 559, 794-812. Recovered 

from https://doi.org/10.1016/j.jhydrol.2018.02.060 

Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP 

and empirical equations for estimation of monthly mean reference 

evapotranspiration. Computers and Electronics in Agriculture, 139, 103-

114. Recovered from https://doi.org/10.1016/j.compag.2017.05.002 

Quej, V. H., Almorox, J., Arnaldo, J. A., & Moratiel, R. (2019). Evaluation of 

temperature-based methods for the estimation of reference 

evapotranspiration in the Yucatán Peninsula, Mexico. Journal of Hydrologic 

Engineering, 24(2). Recovered from https://doi.org/10.1061/(ASCE) 

HE.1943-5584.0001747 

Quej, V. H., Almorox, J., Arnaldo, J. A., & Saito, L. (2017). ANFIS, SVM and 

ANN soft-computing techniques to estimate daily global solar radiation in 

a warm sub-humid environment. Journal of Atmospheric and Solar-

Terrestrial Physics, 155, 62-70. Recovered from 

https://doi.org/10.1016/j.jastp.2017.02.002 

RDevelopment, C. (2009). TEAM 2009: R: A Language and Environment for 

Statistical Computing. Vienna, Austria: RDevelopment. 

Salazar, E. A. Q., Ureña, W. A., & Gallego, H. A. B. (2010). Interfaz gráfica 

para la interpolación de datos a través de splines. Scientia et Technica, 

1(44), 195-200. 

Shiri, J. (2017). Evaluation of FAO56-PM, empirical, semi-empirical and gene 

expression programming approaches for estimating daily reference 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

evapotranspiration in hyper-arid regions of Iran. Agricultural Water 

Management, 188, 101-114. Recovered from 

https://doi.org/10.1016/j.agwat.2017.04.009 

Shiri, J., Sadraddini, A. S., Nazemi, A. H., Kisi, O., Landeras, G., Fakheri Fard, 

A., & Marti, P. (2014). Generalizability of Gene Expression Programming-

based approaches for estimating daily reference evapotranspiration in 

coastal stations of Iran. Journal of Hydrology, 508, 1-11. Recovered from 

https://doi.org/10.1016/j.jhydrol.2013.10.034 

Shrestha, N. K., & Shukla, S. (2015). Support vector machine based modeling 

of evapotranspiration using hydro-climatic variables in a sub-tropical 

environment. Agricultural and Forest Meteorology, 200, 172-184. 

Recovered from https://doi.org/10.1016/j.agrformet.2014.09.025 

Topi, P. K. P., & Vanita, N. (2017). Estimation of reference evapotranspiration 

using data driven techniques under limited data conditions. Modeling Earth 

Systems and Environment. Recovered from 

https://doi.org/10.1007/s40808-017-0367-z 

Torrente-Cantó, L. (2018). Reconstrucción basada en interpolación de Hermite 

aplicada a funciones discontinuas. Recovered from 

http://repositorio.upct.es/handle/10317/7584 

Urraca, R., Antonanzas, J., Antonanzas-Torres, F., & Martinez-De-Pison, F. J. 

(2017). Estimation of daily global horizontal irradiation using extreme 

gradient boosting machines. Advances in Intelligent Systems and 

Computing, 527, 105-113. Recovered from https://doi.org/10.1007/978-

3-319-47364-211 

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory (2nd ed.) New 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua  

Open Access bajo la l icencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 32-81. DOI: 10.24850/j-tyca-2021-03-02 

York, USA: Springer-Verlag.  

Webb, C. P. (2010). Boreau of meteorology reference evapotranspiration 

calculations. (February), 20.  

Wen, X., Si, J., He, Z., Wu, J., Shao, H., & Yu, H. (2015). Support-vector-

machine-based models for modeling daily reference evapotranspiration 

with limited climatic data in extreme arid regions. Water Resources 

Management, 29(9), 3195-3209. Recovered from 

https://doi.org/10.1007/s11269-015-0990-2 

Zhang, Z., Gong, Y., & Wang, Z. (2018). Accessible remote sensing data based 

reference evapotranspiration estimation modelling. Agricultural Water 

Management, 210(July), 59-69. Recovered from 

https://doi.org/10.1016/j.agwat.2018.07.039 

 


