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Abstract 

Hydrological dimensioning or revision of the hydraulic works and the 

elaboration of flood risk maps is based on the so–called Design Floods, 

which are maximum flows of the river associated with low probabilities of 

exceedance. The most reliable way of estimating such predictions is 

through Flood Frequency Analysis (FFA). Its fundamental assumption is 
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that the stochastic process under study is stationary, i.e., it does not 

change with time. Construction of reservoirs, urbanization and changes in 

land use in the basin, as well as global or regional climate change, alter 

the hydrological processes and generate records of annual flows that are 

non–stationary, showing trends and changes in variability. For the FFA of 

such registries, the extreme value theory has been extended to apply its 

classical distribution, the Generalized Extreme Values (GEV), with 

parameters of location (u) and scale (α) varying with time (t), which is 

introduced as a covariate. In this work the L–moment method is 

presented for the fit of the probabilistic model GVE11 whose parameters u 

and α vary linearly over time. Three numerical applications are described. 

Conclusions highlight the simplicity of the exposed method and its 

importance in the estimation of the expected predictions in non-stationary 

annual maximum data series. 

Keywords: Covariate, L–moments, GEV distribution, standard error of 

fit, trend, linear regression, residuals. 

 

Resumen 

El dimensionamiento o la revisión hidrológica de las obras hidráulicas y la 

elaboración de mapas de riesgo por inundación se realizan con base en 

las llamadas crecientes de diseño, que son gastos máximos del río 

asociados con bajas probabilidades de excedencia. La manera más 

confiable de estimar tales predicciones es a través del Análisis de 

Frecuencias de Crecientes (AFC), cuya suposición fundamental es que el 

proceso estocástico bajo estudio es estacionario, es decir, que no cambia 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 164-203. DOI: 10.24850/j-tyca-2021-03-05 

con el tiempo. La construcción de embalses pequeños, la urbanización y 

los cambios de uso del suelo en la cuenca, así como el cambio climático 

global o regional alteran los procesos hidrológicos y generan registros de 

crecientes anuales que son no estacionarios, al mostrar tendencias y 

cambio en su variabilidad. Para el AFC de tales registros se ha extendido 

la teoría de valores extremos, a fin de aplicar su distribución clásica, la 

General de Valores Extremos (GVE), con parámetros de ubicación (u) y 

escala (a) variables con el tiempo (t), que se introduce como covariable. 

En este trabajo se expone el método de momentos L para el ajuste del 

modelo probabilístico GVE11, cuyos parámetros u y α varían linealmente 

con el tiempo. Se describen tres aplicaciones numéricas. Las conclusiones 

destacan la sencillez del método expuesto y su importancia en la 

estimación de las predicciones buscadas en series de datos máximos 

anuales no estacionarios. 

Palabras clave: covariable, momentos L, distribución GVE, error 

estándar de ajuste, tendencia, regresión lineal, residuales 
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Flood risk estimation of a certain area and hydrological dimensioning of 

water works: reservoirs, bridges, walls and protective embankments and 

channelings, is carried out based on so–called Design Floods, which are 

extreme flows of the river associated with low Exceedance Probability. 

The most reliable estimation of design floods is carried out through Flood 

Frequency Analysis (FFA) of the available record or series of maximum 

annual flows. FFA assumes that the random process that generates such 

floods is stationary and therefore its statistical properties do not change 

over time (Khaliq, Ouarda, Ondo, Gachon, & Bobée, 2006; El-Adlouni, 

Ouarda, Zhang, Roy, & Bobée, 2007; El-Adlouni & Ouarda, 2008). 

All physical changes that occur in drainage basins, such as the 

construction of reservoirs, urbanization, channel straightening, 

deforestation, and land use change alter the hydrological processes, 

giving rise to series or records of non–stationary annual maximum flows, 

because they present trends and changes in variability. In addition, the 

impacts of global climate change can exacerbate hydrological process 

alterations, favoring the formation of non-stationary extreme hydrological 

data sets. Since early 1990s, non–stationarity due to urbanization and/or 

climate change was taken into account, correcting the available records, 

applying incremental factors to predictions, or making predictions in the 

rural basin and then adjusting the results for their level of urbanization 

(Jakob, 2013; Prosdocimi, Kjeldsen, & Miller, 2015). 

Currently, the statistical Extreme Value Theory (EVT) has been 

extended to non–stationary conditions, to fit the classical distribution that 
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follow asymptotically the maximum hydrological data series, i.e. the 

stationary probabilistic model Generalized Extreme Value (GEV0) with 

three fitting parameters (u,α,k). This is based on the introduction of the 

so–called covariates, and one of the most used is time (t) in years, 

through which the trend observed in data series can be taken into 

account, adopting the location parameter variable (ut). When the trend is 

linear, ut=μ0+μ1·t and then the four fitting parameter GVE1 model is fitted 

(μ0,μ1,α,k). If the trend is curve, ut=μ0+μ1·t+μ2·t2 and the five fitting 

parameter GVE2 model is applied (μ0,μ1,μ2,α,k). In the GVE11 model, both 

the location parameter and the scale parameter (αt=σ0+σ1·t) are linear 

functions of t time and then, in addition to the trend, the change over 

time of series variability is considered (Khaliq et al., 2006; El-Adlouni & 

Ouarda, 2008; Aissaoui-Fqayeh, El-Adlouni, Ouarda, & St. Hilaire, 2009; 

Jakob, 2013; Gado & Nguyen 2016). 

Khaliq et al. (2006), and Meylan, Favre and Musy (2012) have 

presented a review of various methods used in FFA, in the non–stationary 

context. Such techniques include the incorporation of trends in 

distribution parameters or at statistical moments, the quantile regression 

method, local likelihood processes, and the Bayesian approach. In the 

probabilistic models of the first approach, the use of covariates aims to 

integrate changes that have occurred in the past directly into the 

techniques of FFA, with the aim of extrapolating them to the future. In 

this context, models that use time as a covariate, case of the one 

presented here, are simple and useful to reproduce the non–stationary 

behavior of a flood record, but the acceptance of their predictions is not 

entirely correct, given that, as indicated by López and Francés (2013), 
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trends may change in the short or long term, due to climate variability or 

the intensification of human activities. 

Due to the above, the possibility of incorporating climate indices as 

external forcing into the FFA models has been explored over the past two 

decades, assuming linear or non–linear dependence. This approach has 

shown that the use of such covariates leads to models that better describe 

temporal changes occurred in flood records. In fact, a remote connection 

has been found between the observed changes in flood regimes and the 

anomalies in the indices (ENSO: El Niño–Southern Oscillation; PDO: 

Pacific Decadal Oscillation and NAO: North Atlantic Oscillation) describing 

the temporal evolution of low-frequency atmospheric circulation patterns 

(Khaliq et al., 2006; López-de-la-Cruz & Francés, 2014). 

The objective of this work was to expose the theory of fitting 

Generalized Extreme Values (GEV) distribution in non–stationary 

conditions, by generalizing the L–moment method, proposed by Gado and 

Nguyen (2016) for the GVE11 model. Three series of extreme hydrological 

data taken from the specialized literature are exposed and processed, and 

their results discussed, highlighting the simplicity and usefulness of the 

L–moment method to obtain predictions within the historical and future 

record, when they are important, due to the series upward trend and/or 

its increasing variability. 

 

 

Operational theory 
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Generalized Extreme Values Distribution 

 

 

Annual extreme values are rare events occurring in the right extremity or 

tail of the probability distribution function (PDF), which is the probabilistic 

model that defines the behavior of the hydrological random variable under 

study, such as: floods and maximum values of rainfalls, temperatures, 

winds and sea levels. The extreme values can be predicted based on the 

PDF, such as the maximum of the random variable that corresponds to a 

certain average interval of recurrence or period of return (Tr), whose 

exceedance probability is p = 1/Tr. 

Extreme value theory justifies and states that extreme data follows 

in an asymptotic manner any of the three types of distributions called: 

Gumbel, Fréchet or Weibull (Clarke, 1973; Stedinger, Vogel, & Foufoula-

Georgiou, 1993; Coles, 2001; Khaliq et al., 2006). These three 

probabilistic models can be represented in one, called Generalized 

Extreme Value distribution (GEV), whose application has been widely 

recommended for modeling annual maximum flows (q) and other extreme 

data (Hosking & Wallis, 1997; Papalexiou & Koutsoyiannis, 2013; Gado & 

Nguyen, 2016; Stedinger, 2017). The PDF of the GEV with a non–

exceedance probability [F(q)] is: 
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𝐹(𝑞) = exp {− [1 −
𝑘(𝑞−𝑢)

𝛼
]

1/𝑘

}  when 𝑘 ≠  0    (1) 

 

In the above expression, u, α, and k are the location, scale, and 

shape parameters of the GEV distribution. When k = 0 the Gumbel 

distribution is obtained, which is a straight line on the Gumbel–Powell 

probability paper (Chow, 1964), so the interval of the variable is: –∞ < q 

< ∞. When k > 0 the distribution is Weibull, which is a curve with 

downward concavity and upper limit, so: –∞ < q ≤ u + α / k. Finally, if k 

< 0 the distribution is Fréchet, which is also a curve, but with an upward 

concavity and lower border, so: u + α / k ≤ q <∞. The expected 

predictions (QTr) are obtained with the inverse solution of Equation (1): 

 

𝑄𝑇𝑟 = 𝑢 +
𝛼

𝑘
{1 − [−ln(1 − 𝑝)]𝑘} when 𝑘 ≠  0     (2) 

 

 

Data sample L-moments 

 

 

L–moment method is perhaps the simplest one, and it has become one of 

the reliable procedures for estimating the PDF fitting parameters used in 

hydrology. This is because L–moments, which are linear combinations 
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(Hoking & Wallis, 1997) of weighted probability moments (βr), are not 

significantly affected by sample outliers. The first three L–moments of a 

sample (l1, l2, l3) and the asymmetry L–ratio (t3) are estimated by the 

unbiased estimator (br) of the βr, as follows: 

 

𝑙1 = 𝑏0          (3) 

 

𝑙2 = 2 ∙ 𝑏1 − 𝑏0         (4) 

 

𝑙3 = 6 ∙ 𝑏2 − 6 ∙ 𝑏1 + 𝑏0        (5) 

 

𝑡3 = 𝑙3/𝑙2          (6) 

 

The unbiased estimator of the βr is (Hoking & Wallis, 1997): 

 

𝑏𝑟 =
1

𝑛
∑

(𝑗−1)(𝑗−2)⋯(𝑗−𝑟)

(𝑛−1)(𝑛−2)⋯(𝑛−𝑟)
𝑛
𝑗=𝑟+1 𝑞𝑗       (7) 

 

where r = 0, 1, 2,…. and qj are the data of the available sample or series 

of size n, ordered from minor to major(𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝑛). 
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Stationary GEV distribution fitting parameters 

 

 

With the L–moment method for the GVE0 model, the following equations 

are obtained for its three fitting parameters (Stedinger et al., 1993; 

Hosking & Wallis, 1997; Rao & Hamed, 2000; Stedinger, 2017): 

 

𝑘 ≅ 7.8590 ∙ 𝑐 + 2.9554 ∙ 𝑐2       (8) 

 

being: 

 

𝑐 =
2

3+𝑡3
− 0.63093         (9) 

 

𝛼 =
𝑙2∙𝑘

(1−2−𝑘 )∙Γ(1+𝑘)
         (10) 

 

𝑢 = 𝑙1 −
𝛼

𝑘
[1 − Γ(1 + 𝑘)]        (11) 

 

The Stirling formula (Davis, 1972) was used to estimate the value 

of Gamma Γ(ω) function: 
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 Γ(𝜔) = 𝑒−𝜔 ∙ 𝜔𝜔−1/2 ∙ √2𝜋 ∙ (1 +
1

12∙𝜔
+

1

288 ∙𝜔2 −
139

51840∙𝜔3 −
571

2488320∙𝜔4 + ⋯ ) (12) 

 

 

Non-stationary analysis approach 

 

 

It has two inherent assumptions, the first accepts that non–stationarity 

of the hydrological series of extreme annual values is caused by gradual 

changes in land use or by global or regional climate change; generating a 

slight alteration of its statistical parameters. The second assumption 

accepts that the PDF is time–independent, so the GEV distribution, with 

variable fitting parameters over time, is acceptable for modeling extreme 

non–stationary data. 

Due to non–stationarity, there is great statistical variability 

associated with the sample or series of available extreme annual data and 

it is therefore appropriate to adopt that mean (μ) and standard deviation 

(σ) are functions of time. The simplest way, is carried out by means of 

the probabilistic model GEV11 with linear variations, so: μt=μ0+μ1·t and 

ln(σt)=σ0+σ1·t. In the above expressions, t is the time-in-years covariate 

that encompasses the n-size data series. The use of natural logarithms of 

σ ensures positive values of the scale parameter (α) in the GEV 

distribution (Gado & Nguyen, 2016). The general expressions of the mean 
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and standard deviation of the GEV0 model, the second one obtained 

through the second central moment, are (Rao & Hamed, 2000): 

 

𝜇 = 𝑢 +
𝛼

𝑘
[1 − Γ(1 + 𝑘)]        (13) 

 

𝜎 2 =
𝛼2

𝑘2
[Γ(1 + 2 ∙ 𝑘) − Γ2(1 + 𝑘)]       (14) 

 

 

GEV11 distribution fitting 

 

 

Since the mean and the natural logarithm of the standard deviation are 

linear functions of time, the expression: μt=μ0+μ1·t is first entered in 

Equation (13) to clear the variable location parameter expression over 

time (ut), in which the scale parameter (αt) is also variable, and where 

FK1 is the first function factor of the form parameter (k), such an equation 

is (Gado & Nguyen, 2016): 

 

𝑢𝑡 = 𝜇0 + 𝜇1 ∙ 𝑡 −
𝛼𝑡

𝑘
[1 − Γ(1 + 𝑘)] = 𝜇0 + 𝜇1 ∙ 𝑡 − 𝐹𝐾1 ∙ 𝛼𝑡   (15) 

 

where: 
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𝐹𝐾1 =
1−Γ(1+𝑘)

𝑘
         (16) 

 

From Equation (14), you get the variable scale parameter 

expression over time: 

 

𝛼𝑡
2 =

𝑘2 ∙𝜎𝑡
2

Γ(1+2∙𝑘)−Γ2 (1+𝑘)
         (17) 

 

So: 

 

𝛼𝑡 = 𝐹𝐾2 ∙ 𝜎𝑡 = 𝐹𝐾2 ∙ exp(𝜎0 + 𝜎1 ∙ 𝑡)      (18) 

 

being: 

 

𝐹𝐾2 = √
𝑘2

Γ(1+2∙𝑘)−Γ2 (1+𝑘)
        (19) 

 

Substituting Equation (18) in the Equation (15), the variable scale 

parameter expression over time is obtained: 

 

𝑢𝑡 = 𝜇0 + 𝜇1 ∙ 𝑡 − 𝐹𝐾1 ∙ 𝐹𝐾2 ∙ exp(𝜎0 + 𝜎1 ∙ 𝑡)     (20) 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 164-203. DOI: 10.24850/j-tyca-2021-03-05 

 

The magnitudes μ0 and μ1 of the straight line representing the linear 

trend of the sample or data series qt are obtained based on the equations 

of the linear regression straight line, as follows. The dependent variable 

(y) is considered to be the maximum annual hydrological data qt and the 

times or years t are the abscissa (x), in this case equal to the i–th value 

of i. The slope (μ1) of the regression straight line adjusted by least squares 

of the residuals and the y–intercept (μ0) are obtained with the following 

equations (Campos-Aranda, 2003): 

 

𝑞𝑡 = 𝜇0 + 𝜇1 ∙ 𝑡         (21) 

 

𝜇1 =
cov(𝑞,𝑡)

var (𝑡)
=

1

𝑛
∑ 𝑞𝑖∙𝑖−𝑞 ∙𝑡̅𝑛

𝑖=1
1

𝑛
∑ 𝑖2 −𝑡̅2𝑛

𝑖=1

        (22) 

 

𝜇0 = 𝑞 − 𝜇1 ∙ 𝑡 ̅         (23) 

 

In the equations above, 𝑞 and 𝑡̅ are the arithmetic means of data 

series and time. The linear correlation coefficient (rxy) measures the 

degree of dependence or association between the variables q and t, varies 

from zero to one, indicating with the one the perfect regression, its 

equation is: 
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𝑟𝑥𝑦 =
cov(𝑞,𝑡)

√var(𝑡)∙var(𝑞)
         (24) 

 

being: 

 

var(𝑞) =
1

𝑛
∑ 𝑞𝑖

2 − 𝑞 2𝑛
𝑖=1         (25) 

 

To estimate the linear trend in the standard deviation (σt), first the 

residuals (εt) are obtained with the following equation (Cunderlik & Burn, 

2003; Gado & Nguyen, 2016): 

 

𝜀𝑡 = 𝑞𝑡 − 𝜇1 ∙ 𝑡         (26) 

 

Mean value is obtained (𝜀̅) and absolute deviations (da) of the 

residuals are calculated, with the following expression: 

 

𝜀𝑡
𝑑𝑎 = |𝜀𝑡 − 𝜀̅|         (27) 

 

Natural logarithms are applied to 𝜀𝑡
𝑑𝑎 and represented by a straight 

line whose equation is: 

 

ln(𝜀𝑡
𝑑𝑎 ) = 𝜎0 + 𝜎1 ∙ 𝑡         (28) 
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The values of σ1 and σ0 are calculated based on equations (22) and 

(23). The degree of association between ln(𝜀𝑡
𝑑𝑎) and t is estimated with 

Equation (24) and is designated ry, since the y series is the left side of 

Equation (28). The following equations apply to obtain the stationary 

series without trends in mean and standard deviation (𝑞𝑒
𝜇,𝜎) (Cunderlik & 

Burn, 2003; Khaliq et al., 2006; Gado & Nguyen, 2016): 

 

𝑞𝑒
𝜇,𝜎 = 𝜀𝑡 − 𝜎𝑡  if 𝜀𝑡 ≥ 𝜀̅ when σt > 0    (29) 

 

𝑞𝑒
𝜇,𝜎 = 𝜀𝑡 + 𝜎𝑡  if 𝜀𝑡 < 𝜀̅ when σt > 0    (30) 

 

𝑞𝑒
𝜇,𝜎 = 𝜀𝑡 + 𝜎𝑡  if 𝜀𝑡 ≥ 𝜀̅ when σt < 0    (31) 

 

𝑞𝑒
𝜇,𝜎 = 𝜀𝑡 − 𝜎𝑡  if 𝜀𝑡 < 𝜀̅ when σt < 0    (32) 

 

In the above expressions, σt = exp(σ0 + σ1·t). Equations (9) and (8) 

are applied to the series 𝑞𝑒
𝜇,𝜎 to estimate the form parameter (k) of the 

stationary GEV0 distribution. Finally, Equation (2) is applied to carry out 

the desired predictions, using the expressions of the variable location and 

scale parameters over time, equations (20) and (18), respectively. 
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Standard error of fit 

 

 

Since the mid–1970s, the standard error of fit (EEA) was formulated as a 

quantitative measure that estimates the descriptive ability of the fitting 

probabilistic model (Meylan et al., 2012). The EEA allows objective 

comparison between the various PDFs that are tested or adjusted to a 

series or sample of data, since it has the units of the data (qi). Its 

expression is as follows (Kite, 1977): 

 

𝐸𝐸𝐴 = √
∑ (𝑞𝑖−𝑞̂𝑖)2𝑛

𝑖=1

𝑛−𝑛𝑝𝑎
         (33) 

 

where n is the number of data in the available series, npa is the number 

of PDF fitting parameters being tested (five for the GVE11), qi are the data 

sorted from lowest to highest and 𝑞̂𝑖 are the values estimated with the 

inverse solution of the PDF (Equation (2)), for the non–exceedance 

probability P(X ≤ x) estimated with the Weibull formula (Benson, 1962): 

 

𝑃(𝑋 ≤ 𝑥) =
𝑚

𝑛+1
         (34) 
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in which m is the data order number, with 1 for the lowest and n for the 

highest. 

 

 

Approach to probabilistic analysis 

 

 

For the GEV11 distribution to be applicable to non–stationary record, its 

graph of data values (qi) against time (ti) must show linear trend and 

variability or standard deviation that increases or decreases over time. 

The calculation of the standard error of fit (EEA) with Equation (33), allows 

the comparison or matching of the various non–stationary models tested 

in the series being processed. When the EEA values are similar, a non–

stationary model can be adopted in a subjective manner, for example, 

which leads to the most unfavorable predictions. 

For other non–stationary distributions, there are several such as 

Log–Normal (Vogel, Yaindl, & Walter, 2011; Aissaoui-Fqayeh et al., 2009) 

and the Generalized Logistics (Kim, Nam, Ahn, Kim, & Heo, 2015) and 

Generalized Pareto models, which are susceptible to treatment identical 

to that described in this paper for GEV distribution, changing equations 

(13) and (14) to those corresponding to these models (Rao & Hamed, 

2000). Other covariates can also be used instead of t ime (t), for example 

some global or regional climate indices (López-de-la-Cruz & Francés, 
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2014; Álvarez-Olguín & Escalante-Sandoval, 2016; Campos-Aranda, 

2018a). 

Based on Equation (2), predictions with return periods (Tr) of 2, 10, 

25, 50, and 100 years are estimated through the registration period, 

applying equations (20) and (18). The first prediction corresponds to the 

median, since its non–exceedance probability (1–p) is 50 % and the 

following four are calculated for the following values: 0.90, 0.96, 0.98 and 

0.99 respectively. In addition, future predictions are made in one of the 

processed series, in years 2025 and 2050. Extrapolating over 30 years of 

the observed behavior in the historical trend and its variability is 

considered to be extremely risky. 

In this regard, mobile L–moment method suggested by Mudersbach 

and Jensen (2010) and applied by Campos-Aranda (2018b), whose main 

limitation is to require fairly extensive records, is considered much more 

reliable. Also shown in data and prediction graphs the estimates of 

extreme Tr (2 and 100 years) with stationary GEV0 model, which are 

horizontal dotted straight lines. 

 

 

Processed hydrological series 
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Series 1: With a downward trend and a decrease in 

variability 

 

 

This record was exposed by Katz (2013) as an impressive example of the 

reduction in the winter (May to October) maximum daily precipitation 

(MDP) measured at the Manjimup station in the extreme southwest of 

Australia. The record covers 75 annual values (1930 to 2004), with a 

declining trend and greater variability at the beginning of the record. Their 

approximate magnitudes are shown in Table 1, as they were read from a 

bar graph and are shown in Figure 1. 

 

Table 1. Maximum annual data to be processed for maximum daily 

precipitation (MDP, in millimeters) and flow (q, m3/s) at the indicated 

stations. 

Data 

No. 

(MDP) 

Manjimup 

station 

(q) 

Aberjona 

River 

(q) 

Mercer 

Creek 

Data 

No. 

(MDP) 

Manjimup 

station 

(q) 

Aberjona 

River 

(q) 

Mercer 

Creek 

1 35.7  9.1  6.8 39 34.7 18.7  5.2 

2 49.0  5.9  5.1 40 24.8 39.6  8.9 

3 37.8  7.4  6.7 41 33.6  7.1 15.5 

4 47.1  6.8  6.2 42 24.8  9.3 17.6 
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5 84.0  5.0  5.9 43 29.9 24.4  9.1 

6 44.9  6.2  5.4 44 28.3 12.7 12.3 

7 54.1  9.1  4.8 45 34.8 22.9 11.0 

8 45.9  9.1  4.3 16 36.1  8.5  8.6 

9 64.8 10.2  6.4 47 34.1 14.7 15.5 

10 35.1  3.4  5.4 48 34.9 24.6 18.1 

11 52.3  7.1  5.2 49 35.0  8.8 21.3 

12 63.9  6.8  7.2 50 30.0  8.8 10.9 

13 42.5  6.2  5.0 51 35.0 19.8 13.1 

14 31.4  7.1  7.1 52 28.1 13.9 – 

15 54.6 13.9  5.3 53 28.0  6.8 – 

16 97.5 19.5  5.7 54 51.5 13.9 – 

17 49.6 10.8 11.5 55 32.1 15.0 – 

18 95.9  4.8  6.9 56 37.0  5.9 – 

19 50.0 11.0  9.1 57 24.1  9.1 – 

20 42.9  4.8  9.6 58 32.0 34.0 – 

21 51.8  5.4  7.8 59 63.7 31.1 – 

22 35.6  6.8  7.5 60 33.3 13.3 – 

23 37.2 10.8 11.4 61 46.3 11.0 – 

24 57.0 22.4 13.3 62 51.8 45.3 – 
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25 53.9  6.5 14.7 63 37.9  6.8 – 

26 54.8  8.8 11.9 64 41.2  8.8 – 

27 43.5  2.8 19.0 65 34.1 28.3 – 

28 47.0 10.8 17.4 66 35.0  6.5 – 

29 36.7 18.4 11.5 67 35.0 36.8 – 

30 29.2 13.0 10.0 68 43.4 15.3 – 

31 34.3 21.2 23.6 69 36.0  8.2 – 

32 48.2  4.0 14.2 70 51.4 – – 

33 50.7 15.6  9.5 71 30.0 – – 

34 37.6  8.5  6.5 72 34.1 – – 

35 42.7  7.4 18.9 73 37.0 – – 

36 31.9  6.5 15.1 74 36.0 – – 

37 38.8 13.0  7.8 75 27.3 – – 

38 29.4 10.2  7.9 – – – – 
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Figure 1. Time series of data (MDP) and estimated prediction curves 

with GVE11 distribution at Manjimup pluviometric station, Australia. 

 

 

Series 2: With an upward trend and an increase in 

variability 

 

 

This annual maximum flows record was processed by Vogel et al. (2011), 

it has 69 values in the period from 1940 to 2008, and comes from a 

gauging station located on the Aberjona River just after the city of Boston, 
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Massachusetts, USA, so its basin has always been under the increasing 

impact of urban development. Their approximate values are shown in 

Table 1, as they were read in a dispersion diagram and are shown in 

Figure 2. 

 

 

Figure 2. Time series of data (q) and estimated prediction curves with 

the GEV11 distribution at a gauging station on the Aberjona River, USA 
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Series 3: Segment with an upward trend and an 

increase in variability 

 

 

This annual maximum flow record was presented by Gilleland and Katz 

(2011), and Katz (2013), from a basin in Washington, USA whose Mercer 

Creek gauging station has 51 values in the period from 1956 to 2006. In 

the 15–year interval between 1971 and l985, this record was influenced 

by an increasing and intense urbanization. Because of this, only such a 

lapse should be considered non–stationary. The approximate data of that 

series are given in Table 1, as they were read from a bar graph (Katz, 

2013) and are shown in Figure 3. 

 



 

 

 
2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(3), 164-203. DOI: 10.24850/j-tyca-2021-03-05 

 

Figure 3. Time series of data (q) and estimated prediction curves with 

the GEV11 distribution at Mercer Creek gauging station, Washington, 

USA. 

 

 

Description of results 
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Predictions at Manjimup station 

 

 

The application of equations (22) to (25) to the 75 MDP data in Table 1 

led to the following results: μ0 = 𝜀̅ 52.8382, μ1 = –0.2811, rxy = –0.4313, 

σ0 = 2.2767, σ1 = –0.0132, and ry = –0.2701. The stationary series 

𝑞𝑒
𝜇,𝜎according to equations (29) to (32) accepts a GEV0 model with shape 

parameter: k = –0.0580. 

Equation (2) using the variable location (Equation (20)) and scale 

(Equation 18) parameters leads to a standard error of fit (EEA) of 15.5 

mm. Table 2 shows some of the predictions within the historical record, 

and in the future its predictions are not important due to the downward 

linear trend and the decrease in variability. The predictions with GVE0 

stationary model of return periods 2 and 100 years are: 38.7 and 96.6 

mm. Figure 1 shows the data and the downward prediction curves. 

 

Table 2. Predictions (mm) in the historical period at the Manjimup 

station, based on non-stationary GEV11 distribution. 

No. 

(t) 

Year Data 

(mm) 

Return periods in years 

2 10 25 50 100 

1 1930 35.7 50.9 64.4 71.8 77.6 83.5 
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10 1939 35.1 48.5 60.6 67.1 72.2 77.5 

20 1949 42.9 45.9 56.4 62.2 66.7 71.3 

30 1959 29.2 43.2 52.5 57.5 61.5 65.5 

40 1969 24.8 40.6 48.7 53.1 56.5 60.1 

50 1979 30.0 37.9 45.0 48.9 51.9 55.0 

60 1989 33.3 35.2 41.4 44.8 47.5 50.2 

70 1999 51.4 32.5 37.9 40.9 43.2 45.6 

75 2004 27.3 31.1 36.2 39.0 41.2 43.4 

 

 

Predictions on the Aberjona River 

 

 

The application of equations (22) to (25) to the 69 annual maximum flows 

(q) in Table 1 led to the following results: μ0 = 𝜀̅ = 6.1849, μ1 = 0.1902, 

rxy = 0.4256, σ0 = 0.2563, σ1 = 0.0304, and ry = 0.5496. The stationary 

series 𝑞𝑒
𝜇,𝜎 according to equations (29) to (32) accepts a GEV0 model with 

a shape parameter: k = –0.1857; instead, Equation (2) using the variable 

location (Equation (20)) and scale (Equation (18)) parameters leads to a 

standard error of fit (EEA) of 2.39 m3/s. Table 3 shows some of the 

predictions within the historical record and in the future their predictions 

are important due to the upward linear trend and the increase in 
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variability. Since this record of 69 data ends in 2008, then the value of 

time t in 2025 is 86 and in 2050 is 111. The predictions with GVE0 

stationary model of return periods 2 and 100 years are: 10.1 and 53.3 

m3/s. Figure 2 shows the data and the upward prediction curves. 

 

Table 3. Predictions (m3/s) in the historical period and in the future at 

Aberjona River, based on the non-stationary GEV11 distribution. 

No. 

(t) 

Year Data 

(m3/s) 

Return periods in years 

2 10 25 50 100 

1 1940  9.1  6.1  7.9  9.1 10.1 11.3 

10 1949  3.4  7.7 10.1 11.7 13.0 14.6 

20 1959  4.8  9.4 12.7 14.8 16.7 18.8 

30 1969 13.0 11.1 15.6 18.5 21.0 23.8 

40 1979 39.6 12.8 18.8 22.7 26.1 29.9 

50 1989  8.8 14.3 22.5  27.8  32.4  37.6 

60 1999 13.3 15.7 26.8  34.0  40.2  47.2 

69 2008  8.2 16.8 31.4  40.8  49.0  58.3 

86 2025 – 18.4 42.7  58.6  72.4  87.9 

111 2050 – 18.4 70.5 104.6 134.0 167.2 
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Predictions at Mercer Creek Station 

 

 

The application of equations (22) to (25) to the 15 data from 1971 to 

1985, i.e., data with numbers 16 to 30 in Table 1, led to the following 

results: μ0 = 𝜀̅ = 6.9048, μ1 = 0.5311, rxy = 0.6299, σ0 = –0.7769, σ1 = 

0.1292 y ry = 0.3835. The stationary series 𝑞𝑒
𝜇,𝜎 according to equations 

(29) to (32) accepts a GEV0 model with a shape parameter: k = –0.1451; 

instead, Equation (2) using the variable location (Equation (20)) and scale 

(Equation (18)) parameters leads to a standard error of fit (EEA) of 0.85 

m3/s. 

Table 4 shows a portion of the predictions within the historical 

record and Figure 3 illustrates the data, the upward curves of predictions, 

and their respective extrapolations. 

 

Table 4. Predictions (m3/s) in the historical period at the Mercer Creek 

station, based on the non-stationary GEV11 distribution. 

No. 

(t) 

Year Data 

(m3/s) 

Return periods in years 

2 10 25 50 100 

1 1971  5.7  7.3  8.1  8.5  8.9  9.3 

4 1974  9.1  8.9  9.9 10.6 11.2 11.8 

7 1977  7.5 10.4 12.0 13.0 13.8 14.7 
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10 1980 14.7 11.8 14.2 15.7 16.9 18.2 

13 1983 17.4 13.3 16.7 18.9 20.7 22.7 

15 1985 10.0 14.2 18.7 21.5 23.8 26.3 

 

For this data series, the predictions with the stationary GEV0 model 

are of capital importance to approve the extrapolation, toward the 

beginning and end of the record, of the predictions of GEV11 model that 

will be the most critical one (Gilleland & Katz, 2011). Therefore, two 

fittings were made: (1) with the initial stationary record of 15 data (1956–

1970) and (2) with the lapse of 21 values (1986–2006) occurring after 

the trend and increasing variability segment (1971–1985). The 

predictions of the first fitting were: 5.7, 7.0, 7.6, 7.9, and 8.2 m3/s for 

the return periods (Tr) of 2, 10, 25, 50, and 100 years, with an EEA = 

0.193 m3/s; the predictions for the second fitting were: 12.2, 19.9, 23.4, 

25.9 and 28.2 m3/s, with an EEA = 0.691 m3/s. 

Then, according to Table 4 results, all predictions of GEV11 are 

extrapolable toward the start of the record, being greater than those of 

GEV0. Towards the end of the record, only the median is extrapolated (Tr 

= 2 years), which is 14.2 m3/s, due to the predictions of the other Tr; 

those obtained with GEV0 are more extreme than those in the last line of 

Table 4. The above is shown in Figure 3. 
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Discussion of results 

 

 

From a practical point of view, the three numerical applications described 

cover the common cases in which is applicable the GVE11 model to non–

stationary extreme hydrological data records; these are:  

1. Series with downward trend and variability, present in records of floods 

when several small reservoirs have been built within the drainage basin; 

such behavior may also be associated with global climate change, which 

was the case with the Manjimup pluviometric station. 

2. Records of flows with upward trend, usually associated with basins that 

have intense urban devel–opment or deforestation, which is the case with 

Mercer Creek station.  

If both processes occur in the basin, or are enhanced by the impacts 

of climate change, variability also increases toward the end of the sample, 

which was the case with the Aberjona River. 

Predictions, beyond the historical record (t > n), associated with low 

exceedance probabilities (Design Floods) lack importance in records with 

downward trend and variability, as they are smaller in the future. The 

opposite is true for series with upward trend and increasing variability, 

but in these series it is necessary to explain or account for the probable 

physical origin of such behavior in order to accept future predictions and 

try to discern their actual extent. This, because it is extremely risky to 
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accept the behavior of increasing variability, when, for example, it is not 

known whether urban development will continue in the drainage basin. 

To further explain the above, it is indicated that Meylan et al. (2012) 

have noted that the various approaches or new methods of the FFA, which 

accept nonstationarity, have generated techniques that allow predictions 

to be made, associated with low exceedance probability to face the design 

of hydraulic works. However, there is an urgent need to replace the 

concept of return periods (Tr, in years), to adapt it to the context of 

nonstationarity. This is because the Tr is defined with the average 

recurrence interval, measured over a large number of occurrences. As it 

happens now, in nonstationarity, mean changes over time, the concept of 

Tr is meaningless. Details and solutions have been proposed in the 

references of Sivapalan and Samuel (2009); Salas and Obeysekera 

(2014); Serinaldi (2015), and Salas, Obeysekera and Vogel (2018). 

 

 

Conclusions 

 

 

Flood Frequency Analysis (FFA) in non–stationary records showing non–

constant trend and/or variability will be increasingly common in the 

immediate future, due to increased demand for drinking water and food, 

as well as to the impacts of climate change and urban development. A 
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simple and uncomplicated computational approach that allows the FFA to 

be performed on such records is based on the extension of the extreme 

values theory through the fitting with L–moments, of non–stationary 

distribution GEV11 with location parameter and scale variables linearly 

with the time that is entered as covariate. Therefore, GEV11 model is 

suitable when the series of extreme hydrological data shows trend and 

increase or decrease in variability that can be accepted as linear. 

Based on the results of the three numerical applications in non–

stationary records, the simplicity of the above method is observed, as well 

as the ease of obtaining the predictions associated with non–exceedance 

probabilities. Graphical contrast is basic for validating the descriptive 

ability of predictions within the historical record and in the near future. 

The numerical results of the standard error of fit will allow the contrast 

and acceptance of other probabilistic non-stationary models. The 

application of the GEV11 probabilistic model to other extreme hydrological 

data, such as winds, temperatures, droughts and sea levels, is fully 

feasible. 
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