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Abstract 

This study proposes a methodology using Landsat-8, Sentinel-1, and 

Sentinel-2 images to determine Landcover and Runoff Coefficient. It 

considers geographic and climatic characteristics of the region, 

resolutions of sensors, and accuracy obtained using four classifiers: 

Minimum Distance, Spectral Angle Mapper, Maximum Likelihood, and 

Support Vector Machines. The methodology was applied to regions in 

Mexico with diverse characteristics. The overall accuracy, commission, 

and omission were obtained for each classifier-sensor combination. These 

indicators were analyzed by region, sensor, and algorithm. Presence, 

accuracy, error of commission, and omission of cover were analyzed 

according to land cover class. Landsat-8 had the highest average accuracy 

(76.1 %), followed by Sentinel-2 (75 %), and Sentinel-1 (38.8 %). 

Minimum distance had the highest accuracy (71.2 %), followed by 

Support Vector Machines with 70.5 %, Spectral Angel Mapper with 60.9 

%, and Maximum Likelihood with 50.7 %. This methodology makes it 

possible to use open-access satellite images and programs to define 
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criteria for determining land cover with good accuracy and high spatial 

resolution. The results of our research show that to estimate runoff 

coefficients, open-access satellite images must be selected based on 

criteria such as sensor resolutions, classification algorithm to be used, 

period and scale of the study, climate, types, and dynamics of land 

coverage, as well as the dominant coverage class. 

Keywords: Runoff Coefficient, Mexico’s valley basin, Bajo Bravo, Bajo 

Grijalva, minimum distance, maximum likelihood, spectral angle mapper, 

support vector machines, Sentinel, Landsat. 

 

Resumen 

Este estudio propone una metodología que utiliza imágenes Landsat-8, 

Sentinel-1, y Sentinel-2 para determinar cobertura terrestre y 

coeficientes de escurrimiento. La metodología considera características 

geográficas y climáticas de la región, resolución de sensores y exactitud 

obtenida mediante cuatro clasificadores: distancia mínima, máxima 

verosimilitud, mapeo espectral angular y máquinas de soporte vectorial. 

La metodología se aplicó en regiones de México con características 

diversas. La exactitud general, error de comisión y de omisión fueron 

obtenidos para cada combinación de clasificador y sensor. Asimismo, 

estos indicadores se analizaron por región, sensor y algoritmo. Presencia, 

exactitud, error de comisión y omisión se analizaron por cada clase de 

cobertura terrestre. Landsat-8 obtuvo un acuerdo promedio mayor (76.1 

%), seguido por Sentinel-2 (75 %) y Sentinel-1 (38.8 %). Distancia 

mínima tuvo el mayor acuerdo promedio (71.2 %), seguido por máquinas 
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de soporte vectorial con 70.5 %, mapeo angular espectral con 60.9 % y 

máxima verosimilitud con 50.7 %. Esta metodología hace posible usar 

imágenes y programas de acceso abierto para definir criterios que 

permitan determinar cobertura terrestre con buena exactitud y alta 

resolución espacial. El resultado de la investigación muestra que, para 

estimar correctamente coeficientes de escurrimiento, las imágenes 

satelitales de acceso abierto deben ser seleccionadas con base en criterios 

como resoluciones del sensor, algoritmo de clasificación a ser ocupado, 

periodo y escala del estudio, clima, tipos y dinámica de cobertura 

terrestre, así como clase de cobertura dominante.  

Palabras clave: coeficiente de escurrimiento, cuenca del Valle de 

México, bajo Bravo, bajo Grijalva, distancia mínima, máxima 

verosimilitud, mapeo espectral angular, máquinas de soporte vectorial, 

Sentinel, Landsat. 
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Runoff Coefficient (RC) is used to calculate runoff and water balance, as 

well as to study other hydrological factors (Savenije, 1996; Sivapalan, 

BlöschlMerz, & Gutknecht, 2002; Merz, Blöschl, & Parajka, 2006). RC is 

obtained using land cover (LC), soil texture (ST), and mean precipitation 

(MP) spatial layers (DOF, 2015). One problem with applying this method, 

especially about LC, is that these layers generally are either not up-to-

date, have significant errors, or are not available. One option for 

addressing this problem is to obtain LC from a valid classification of 

satellite images and thereby obtain RC. Several studies have explored 

how to define RC (or similar variables) by using remote sensors to 

determine LC. Rawat, Mishra, and Ahmad (2017) used images from the 

Linear Imaging Self Scanning Sensor (LISS-III) to obtain LC layers, based 

on which they found curve numbers (similar to RC). Zeng, Tang, Hong, 

Zeng, and Yang (2017) obtained LC from MODIS to update the global 

curve numbers map and calculate runoff based on precipitation and ST. 

Che, Liang, Li, and Ma (2018) classified vegetation types using Landsat-

8 (L8) images with Support Vector Machines (SVM), based on which they 

found the RC. Kurczyn-Robledo, Kretzschmar, and Hinojosa-Corona  

(2007) used Ikonos images to calculate the normalized difference 

vegetation index (NDVI) and thereby found the potential surface runoff in 

the Serranía Matcuatai, Mexico. Studies have also been performed using 

remote sensors with products related to runoff or similar ones (Weng, 

2001; Immerzeel, Droogers, De-Jong, & Bierkens, 2009; Milewski et al., 

2009; Stisen & Sandholt, 2010). 

Although RC can clearly be calculated based on satellite images, 

well-defined criteria are not yet available for selecting an image and 
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algorithm according to the particular characteristics of the area of 

interest. The various types of image resolution is one aspect that can be 

considered for defining these criteria. For example, temporal resolution 

(TR) makes it possible to analyze whether the number of images per unit 

of time is sufficient for a project’s needs (Chuvieco, 1991; Eastman, 

2003). Regions that are highly heterogeneous should use data with a high 

spatial resolution (SR) (Herold, Latham, Di-Gregorio, & Schmullius, 2006; 

Liu & Tian, 2010; Tran, Julian, & De-Beurs, 2014; Lei et al., 2016; Chen 

et al., 2015; Abdikan, Sanli, Ustuner, & Calò, 2016; Chatziantoniou, 

Psomiadis, & Petropoulos, 2017). Spectral resolution (SpR) defines the 

characteristics of the LC that will be perceived by the sensor. About open 

access sensors, L8 and Sentinel-2 (S2) register information from light 

reflected in optical bands and from the infrared region. Synthetic-aperture 

radar onboard the Sentinel-1 (S1) registers dielectric properties and the 

shape of the LC and is not sensitive to cloud cover since it detects the 

microwave region (Zuhlke et al., 2015; Grizonnet et al., 2017).  

The objectives of our study are to define the characteristics that an 

open-access satellite image should have to obtain LC and thereby obtain 

RC and to define which combinations of sensor with common classifier 

algorithms function best for determining RC given the hydrological 

characteristics of the study. 

 

 

Methodology 
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The methodology proposed in this article was used to define criteria for 

selecting the most suitable open access sensor based on characteristics 

of these sensors, hydrological and geographic characteristics of the study 

area involved in the calculation of the RC, and the accuracy obtained in 

combination with the classification algorithms. To include diverse climatic 

and geographic characteristics, the methodology was applied to regions 

in Mexico: Bajo Grijalva (BG, humid tropical climate with low population 

density), the Valley of Mexico (VM, highly urbanized, central high plains), 

and San Juan-Bajo Bravo (BB, semi-arid with irrigated cropland and some 

urban areas).  

The section is structured according to the following sections: Study 

Area, Base criteria for image selection, Processing, and evaluation of the 

LC classification, Selection of the image to be used to calculate RC, and 

Calculation of RC. 

 

 

Study area 

 

 

Figure 1 shows the BG, VM, and BB regions, which have contrasting 

hydrological characteristics and represent different geographic and 

climatic zones in Mexico (Rascón & Rivera, 2005). The BG basin is part of 
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the northwest zone of Hydrological Region Grijalva-Usumacinta at the 

south of Mexican territory (CONAGUA, 2007). This region has a humid 

tropical climate (García, 1998), a low degree of alteration, and a high-

pressure level on water resources (Cotler, Garrido, Bunge, & Cuevas, 

2010). The salaried employees in this region are mainly engaged in 

industrial activities but about 30 % of the total receive less than a 

minimum wage (INEGI, 2009). The most important population center is 

the city of Villahermosa with more than 300,000 habitants (INEGI, 2015). 

The hydrological parameters of this exoreic region are MP 1 500-4 500 

mm (Cuervo-Robayo et al., 2014), mean annual runoff of 1 000-2 000 

mm (Jiménez & Maderey, 1992), evapotranspiration of 1 401-1 500 

(Maderey, 1990) and RC of 0-30 % (INEGI, 2010). VM is in the central 

high plains at the homonymous Hydrological Region (CONAGUA, 2007). 

This region has a temperate climate (García, 1998), an extreme degree 

of alteration, and medium pressure on water resources pressure level 

(Cotler et al., 2010). It is highly urbanized and has the highest population 

density among the compared basins in this study. In this area, 

approximately 70 % of the population is employed in shops and services 

activities (INEGI, 2009). The most important population center in Mexico 

City and its metropolitan area with more than 19 million inhabitants 

(INEGI, 2015). This exorheic basin has the hydrological parameters: MP 

of 400-1 500 mm (Cuervo-Robayo et al., 2014), mean annual runoff of 

10-500 mm (Jiménez & Maderey, 1992), evapotranspiration of 400-800 

(Maderey, 1990), and RC of 0-30 % (INEGI, 2010). BB is in the north at 

the Bravo Conchos y Rio San Juan Hydrological Regions (CONAGUA, 

2007). It has a semi-arid climate (García, 1998), a high degree of 
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alteration, and a high-pressure level on water resources (Cotler et al., 

2010). In this part of the territory, the population density varies in an 

interval of 23 and 80 inhabitants/km2. The population is mostly employed 

in industrial activities and other salaried employments (INEGI, 2009). The 

most important population center is the city of Monterrey, with 1 109 171 

inhabitants (INEGI, 2015). The hydrological parameters of this exorheic 

basin are MP of 500-800 mm (Cuervo-Robayo et al., 2014), mean annual 

runoff of 10-50 mm (Jiménez & Maderey, 1992), evapotranspiration of 

400-500 (Maderey, 1990), and RC of 0-20 % (INEGI, 2010). 

 

 



 

 

 

2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 

(https://creativecommons.org/licenses/by-nc-
sa/4.0/) 

 

217 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(5), 208-253. DOI: 10.24850/j-tyca-2021-05-05 

Figure 1. Location of study regions BB, BG, and VM. Source: Own 

design with data from Conagua (2007). 

 

 

Information resources 

 

 

Table 1 shows information from the L8, S1, and S2 images that were 

selected for each region, which was downloaded from 

https://earthexplorer.usgs.gov/ and https://scihub.copernicus.eu/. 

These images correspond to the end of the rainy season to include LC 

during a period that has a high level of runoff. For comparison purposes, 

the closest possible dates in September were used. The areas in the 

images having the largest spatial overlap were selected for each region. 

They were also selected based on the criterion of low cloud cover. Table 

1 shows the minimum and maximum coordinates, and the areas with 

image overlap of the three sensors for each of the regions. Also, the 

identifier and the date of each of the downloaded images are included.  

 

Table 1. Images used in the study. 

Region 
Sensor/Date/Identification of the 

image 

Overlapping areas in the 

images 
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Coordinates 
Area 

(km2) 

Minimum Maximum  

BB 

LS8/ 8 Sept. 2016 

LC08_L1TP _027042_20160908_20170222

_01_T1 

99.0217 

N, 

25.4894 

O 

97.9482 N, 

26.219 O 
5 915 

S1/ 25 Sept. 2016 

S1A_IW_GRDH_1SDV_20160925T004143_

20160925T004208_013202_01500A_8E60 

S2/ 9 Sept. 2016 

S2A_OPER_MSI_L1C_TL_SGS__20160909T

221922_A006358_T14RNP. 

S2A_OPER_MSI_L1C_TL_SGS__20160909T

221922_A006358_T14RMP 

BG 

LS8/ 24 Sept. 2016 

LC80220472016249LGN00 

93.2607 

N, 

18.2439 

O 

92.7732 N, 

18.4422 O 
688.6 

S1/ 27 Sept. 2016 

S1A_IW_GRDH_1SDV_20160927T002314_

20160927T002340_013231_0150F0_905A 

S2/ 21 Aug. 2016 

S2A_OPER_MSI_L1C_TL_SGS__20160821T

214512_A006086_T15QVA 

S2A_OPER_MSI_L1C_TL_SGS__20160821T

214512_A006086_T15QWA 

VM 
L8 / 17 sept. 2016 

LC80260472016261LGN00 

99.3396 

N, 

98.9069 N, 

19.7256 O 
1 676 
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S1 / 25 Sept. 2016 

S1A_IW_GRDH_1SDV_20160930T004826_

20160930T004851_013275_015252_C5B5 

19.3129 

O 

S2 / 9 Sept. 2016 

S2A_OPER_PRD_MSIL1C_PDMC_20160912

T231518_R069_V20160909T170302_2016

0909T17110 

 

 

Base criteria for image selection 

 

 

To identify if each sensor can help to determine the LC of the Mexican 

territory and what the advantages are given by each of them, a 

comparative analysis was for SR, TR, and SpR was done. The analysis of 

SpR of optical images included the sensibility of the sensor for the spectral 

signatures involved in the RC: tap water, concrete, brownish-gray sand, 

and vegetation. For this, a graphic (fig. 2 included in the results section) 

was generated with the mentioned signatures and the ranges of the 

electromagnetic spectrum of each sensor (Baldridge, Hook, Grove, & 

Rivera, 2009; ESA, 2013a; ESA, 2013b; USGS, 2016). For S1, the 

polarizations Vertical-Horizontal (VH), Vertical-Vertical (VV), and its 

subtraction (VV-VH) were used, following Abdikan et al. (2016). 
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Processing and evaluation of the LC classification 

 

 

For L8 and S2, a radiometric and atmospheric correction was performed 

with the DOS method, using the QGIS 2.18 “Semi-Automatic 

Classification Plugin” (SCP) (Song, Woodcock, Seto, Lenney, & Macomber 

2001; Congedo, 2016). For S1, noise elimination, calibration, multi-

sweep, and terrain corrections were performed using the “SNAP Tool” 

(ESA, 2013a). The LC classes were defined based on the characteristics 

of each region, using as a reference official data INEGI on land use and 

“series V” vegetation, as well as the LC-K correspondence table (INEGI, 

2013). The SCP was used to create the regions of interest (Solis et al., 

2005), which were defined as: water bodies, human settlements, bare 

soil, cropland-pasture, clouds, shadows, xerophytic mesquite, thorny 

shrubs, submerged vegetation, flood-prone zones, forest, and shrubs.  

While various supervised classification algorithms exist, our study 

is limited to Minimum Distance (MD), Maximum Likelihood (ML), Spectral 

Angle Mapper (SAM), and SVM. MD is mathematically simple. It calculates 

the Euclidian distance from the spectral signatures, assigning the class 

corresponding to the signature that is closest to the pixel (Wacker & 

Landgrebe, 1972; Richards & Xiuping, 2013; Congedo, 2016). ML 

calculates probability distributions in accordance with the Bayes theorem 

(Sudhakar, Sridevi, Ramana, Rao, & Raha, 1999; Bruzzone & Prieto, 

2001; Richards & Xiuping, 2013; Zhao & Zhao, 2013; Jia et al., 2014). 
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SAM calculates the angle between the spectral signatures of image pixels 

and training spectral signatures (Kruse et al., 1993). SVM defines the 

separation surface between two classes based on the definition of support 

vectors (Manning, Raghavan, & Schuetze, 2009; Theodoridis & 

Koutroumbas, 2008; Mountrakis, Im, & Ogole, 2011). The four algorithms 

were applied to each region using 25 to 30 training areas per class, which 

corresponded to a sampling of 2 to 5 % of the total area. The training 

areas were selected based on a stratified random sampling of each type 

of cover. MD and SAM were applied with SCP-QGIS, ML with GRASS GIS, 

and SVM with Orfeo-QGIS.  

The accuracy that a classification presents with the actual value in 

the terrain depends on the SR, TR, and radiometric resolution (RR) of 

each sensor (Rogan & Chen, 2004). The validation of the obtained LC has 

been performed taking reference data from the National Institute of 

Statistical Geography (INEGI, acronym in Spanish), as well as with high-

resolution images from Google Earth and Bing Aerial (Abdikan et al., 

2016; Yu & Gong, 2012). At least 30 validation points per LC class were 

also randomly generated, and the individual results of each algorithm-

sensor-region combination were validated with those points according to 

Abdikan et al. (2016), and Yu and Gong (2012). After that, the unbiased 

population matrix and the accuracy calculations have been performed 

(Pontius Jr. & Santacruz, 2014) to validate the classifications correcting 

sampling bias (Pontius Jr. & Millones, 2011; Pontius Jr. & Santacruz, 

2014; Estoque et al., 2018; Huang, Huang, Pontius, & Tu, 2018). The 

equations proposed by Pontius Jr. and Santacruz (2014) were applied to 

each combination of algorithm-sensor for each region to obtain the 
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following indicators: unbiased population matrix, overall accuracy (OA), 

overall omission (OO), overall commission (OComm), the accuracy of 

cover (AC), omission of cover (OC), and commission of cover (CC). To 

synthesize the results, the average OA was obtained for each hydrological 

region, as well as for each sensor and each classification algorithm.  

 

 

Calculation of RC 

 

 

The first step to calculate RC was to select the LC image. To this end, the 

criteria resulting from section “Information resources” are used, as well 

as the results of the classifications with the highest OA. After that, the 

calculation was done accordingly to the following equations. 

RC is expressed in function of MP and the K parameter, as shown 

by (DOF, 2015): 

 

𝑅𝐶 =
𝐾(𝑀𝑃−250)

2000
 𝑖𝑓 𝐾 ≤ 0.15       (1) 

 

𝑅𝐶 =
𝐾(𝑀𝑃−250)

2000
+

𝐾−0.15

1.5
 𝑖𝑓 𝐾 ≥ 0.15      (2) 
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K is obtained according to tables that combine LC and ST, such as 

those reported by Solis et al. (2005).  

Equation (1) and Equation (2) were applied to the selected images. 

They were transformed into a decision algorithm to calculate RC that used 

a K factor raster obtained from the correspondence tables by Solis et al. 

(2005), a raster of annual MP obtained with regression-kriging 

interpolation obtained accordingly to the reported by Tapia-Silva (2019), 

and an ST raster (INIFAP, 1995). The use of correspondence tables is one 

method that is suggested in countries such as Mexico for determining the 

RC (DOF, 2015). These tables show the relationship between the K 

parameter and ST (INIFAP, 1995; Solís et al., 2005).  

 

 

Results and discussion 

 

 

Base criteria for image selection 

 

 

Figure 2 presents a comparison of the spectral bands selected for optical 

sensors L8 and S2. The top section shows the behavior of the spectral 

signatures of tap water, concrete, brownish-gray sand, and vegetation 

(Baldridge et al., 2009). The wavelength, in micrometers, is shown on the 
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x-axis and reflectance on the y-axis. Dotted lines run through and 

intersect the wavelengths that are perceived by each sensor. This graphic 

enabled us to select the optical sensor bands. The bands selected were 

those that are sensitive to the electromagnetic spectrum range, where 

reflectance varies in function of the type of LC. We selected bands 2, 3, 

4, 5, 6, and 7 to classify LC using L8. Since band 1 is used to study shallow 

water, we included that in the BG region only. We selected bands 2, 3, 4, 

5, 6, 7, 8, 8A, 11, and 12 to classify LC using S2. We also included 1 with 

S2 for the BG region to improve the definition of water bodies.  
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Figure 2. Spectral comparison of sensors L8 and S2 to determine LC. 

Developed by the authors with information from Baldridge et al. (2009), 

ESA (2013a), ESA (2013b), and USGS (2016). 

 

 

Processing and Evaluation of the LC Classification 

 

 

Table 2 shows the OA of all the algorithm-sensor combinations for each 

of the regions, in order of high to low. Region BG had the highest average 

OA for all the classifications (70.3 %), while BB resulted in 61.5 %, and 

VM in 58.2 %. The size of the area selected for each region may be a 

factor of influence, given that the highest OA corresponds to the area of 

analysis that is smallest in size. In BG, the water bodies cover a large 

area, which could have influenced the high OA obtained since an extra 

band helped to identify them using optic sensors and radar images are 

useful to detect water. In the case of the VM, the dynamics of change and 

the complexity of the area may have influenced the OA obtained for that 

region, which had the lowest average of the study regions. The bottom of 

Table 2 shows the results for each sensor. L8 presented the highest 

average OA, with 76.1 %, even though it had the lowest SR. That gives it 

the distinction of being a very useful sensor for defining LC types as well 

as other biophysical parameters. The performance of S2 was similar, with 

an OA of 75 %. S1 resulted in an OA of 38.8 %, which is much lower than 
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the sensors mentioned above. The sensors that had the highest OA were 

those with the highest SpR. The low accuracy found with S1 may be due 

to the use of only three bands for the classification, which strongly differs 

from a report by Abdikan et al. (2016), who obtained the best results with 

the combination of bands VV, VH, and the subtraction of VV-VH. The MD 

was the classifier with the best performance, with an OA of 71.2 %, 

followed by SVM with 70.5 %, and SAM with 60.9%. The poorest 

performance was ML, with 50.7 %. 

 

Table 2. OA of the LC classification for each sensor- algorithm 

combination implemented in this study. 

BB BG VM 

Sensor Algthm

* 

OA 

(%) 

Sensor Algthm

* 

OA 

(%) 

Sensor Algthm

* 

OA 

(%) 

S2 MD 83.5 L8 SVM 90.5 L8 SAM 84.6 

S2 SVM 81.5 L8 ML 88.6 L8 MD 83.8 

S2 SAM 80.8 S2 SVM 87.9 L8 SVM 80.1 

L8 SVM 78.2 S2 MD 86.2 L8 ML 79.4 

S2 ML 77.4 L8 SAM 86.1 S2 SAM 71.5 

L8 MD 76.9 S2 SAM 84.2 S2 MD 67 

S1 SVM 68.6 S2 ML 84.1 S2 SVM 57.3 

S1 MD 62.3 L8 MD 81.5 S1 MD 46 

L8 SAM 57.9 S1 MD 53.7 S1 SVM 41.6 

S1 SAM 26 S1 SVM 48.7 S2 ML 39.2 

L8 ML 26 S1 SAM   28  S1 SAM 27 
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S1 ML 18 S1 ML 23 S1 ML 21 

Average BB = 61.5 Average BG = 70.3  Average VM = 58.2 

Average by Sensor Average by algorithm 

L8 = 76.1 S2 = 75 S1 = 38.8 MD= 

71.2 

SVM= 

70.5 

SAM= 

60.9 

ML= 

50.7 

*Algthm: algorithm. 

 

For the BB region, eight combinations had an OA over 60 %. The 

higher OA in this region was obtained with S2 combined with MD, SVM, 

and SAM (in that order), and the lowest OA was obtained with ML 

combined with L8 and S1 sensors. Based on these results, S2 is 

recommended for regions that are similar to BB (little precipitation and a 

large presence of irrigated cropland). The SR of S2 facilitates the 

identification of small objects of interest and was therefore helpful for this 

region, which contains large territorial contrasts. 

For the BG region, eight combinations had an OA over 80 %: L8 and 

S2 combined with the four algorithms. The highest OA was 90.5 %, which 

was obtained with L8-SVM which presented the best performance of all 

combinations in this study. S2 with MD ended up in fourth place overall, 

even though its average OA was higher than those of the other 

algorithms. In contrast, the ML for this region had the second-highest OA, 

although it performed poorly in other combinations. The BG images have 

1 to 3 % cloud cover, and images without clouds could not be found for 

that date. In addition, cloud cover and their shadows presented the 

highest accuracy in this region, which positively affected overall 

performance. Normally, S1 is advantageous for regions such as BG, where 
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there is high precipitation and cloud cover since its technology is 

insensitive to those factors. However, in our case, this advantage did not 

mean improvements in the OA and this may be related to the fact that 

the selected images presented the above-mentioned percentages of 

cloudiness. 

For the VM region, six combinations had an OA of over 60 %. L8 

combined with the four algorithms resulted in the highest OA, even 

though more bands were used with S2. This indicates that this 

combination is suitable for regions with spatial configurations that are 

similar to VM (predominantly urban). This combination presented higher 

OA with SAM and MD. The OA was less than 60 % for S2 combined with 

SVM and ML. In this region, the results were poorest for S1-ML, S1-SAM, 

and S2-ML. 

Figure 3 presents (in % of the domain) the presence of cover (PC), 

represented by a black square. AC (green bars), OC (red bars), and CC 

(blue bars) for the classifications with the best performance in each region 

are shown in the same figure. For BB, cropland-pasture presented the 

highest PrC (55.7) and AC (51.4) with the S2-MD combination. AC for 

human settlements was 3.0. For this category, CC was greater than OC, 

which indicates that this category was overestimated. Xerophytic 

mesquite and thorny shrubs have very similar spectral signatures, which 

resulted in high OO and CC values. The errors for bare soil may be due to 

confusion with areas where crops had been recently planted. Thus, a high 

number of pixels was mistakenly assigned to bare soil (1.8 of CC), and 

the category was overestimated. For BG, bare soil was the land cover with 

the lowest AC and PC, with 1.1 % in both values. The CC for cropland-
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pasture (0.9) and flood prone zones (2.5) may be due to their having very 

similar spectral signatures when crops begin to grow in those areas. 

Mangroves were distinguishable in the image and had a high AC (13 % 

for 15.5 % of PC). Water bodies had a low CC (0.1 %) since there was 

virtually no spectral confusion. Human settlements were underestimated, 

since CC for this class was lower than OC, with a PC of 2.8 %.  

 

 

Figure 3. PC, AC, CC, and OC classifications of best performance in the 

analysis (as % of domain). 
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In the VM, urban zones were dominant, and the AC was high (46.3 

% with a PC of 49.9 %), and they were correctly classified by the L8-SAM 

combination. Bare soil, forest, and water bodies had lower AC and PC. 

Cropland-pasture and shrubs had a low PC. For these cases, AC exceeded 

half of the PC. As in the other regions, OC was higher for bare soil and 

cropland-pasture, and the latter was confused with the shrub. Shrub and 

urban areas were overestimated, with a CC of 4.9 and 3.6 %, 

respectively. The remaining classes were underestimated, as indicated by 

an OC less than CC.  

In all of the study regions, the dominant class made it possible to 

identify training areas with a high number of pixels and a homogenous 

spectral signature, resulting in high AC values. This proportional relation 

between PC and AC was reflected by bare soil, which had a low PC and 

AC. While shadows and clouds resulted in high AC levels, they do not 

contribute to the RC value, and furthermore, they make it difficult to 

adequately determine RC by making it difficult to identify the LC on the 

site. 

Table 3 presents the PC results from the sensor-classifier 

combinations for the three regions. The combinations with the highest OA 

are highlighted in bold (S2-MD-BB, L8-SVM-BG, and L8-SAM-VM). For BB, 

L8-SVM and S1-SVM were the combinations with PC that were most 

similar to the one with the highest AC. The combinations with PC that 

were least similar to those with the highest AC were L8-ML and S1-ML. 

S1-SAM and S1-MD are not recommended because they overestimated 

or underestimated one of the classes studied. 
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Table 3. PC results, per category, for the sensor-classifier 

combinations, applied to regions BB, BG, and VM (in % of the domain) 

 

PC per category (see the meaning of numbers below the table) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Sensor/ 

Algorithm 
BB 

 

L8 

MD 
0.6

1 

4.3

9 

21.9

3 

6.2

1 
49.1 

16.8

1 

0.3

7 

0.5

9 
- - - - - 

SAM 
0.4

5 

4.0

4 

24.2

9 

6.9

6 

41.5

6 

20.3

7 
0.5 

1.8

4 
- - - - - 

ML 
0.4

2 

4.9

2 

19.6

4 

55.

7 

17.7

1 
0 

1.0

9 

0.5

3 
- - - - - 

SVM 
0.6

6 
3.8 20.6 5.8 

50.6

4 

16.3

4 

1.4

7 

0.6

9 
- - - - - 

S1 

MD 
34.

2 

2.9

3 

11.0

1 

16.

4 

25.4

6 

10.0

9 
- - - - - - - 

SAM 
15.

2 

17.

3 
14.9 

17.

4 

23.5

8 

11.6

2 
- - - - - - - 

ML 0 0 0 100 0 0 - - - - - - - 

SVM 
0.8

9 
2.3 

20.2

5 

4.7

8 

44.8

1 

26.9

6 
- - - - - - - 

S2 

MD 0.4 3.3 
16.2

3 

5.9

2 

55.6

4 

17.9

3 

0.3

6 

0.2

1 
- - - - - 

SAM 
0.4

2 

2.7

8 

19.6

5 

6.2

2 
46.4 

21.7

4 

0.5

8 

2.2

2 
- - - - - 
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ML 0 
8.5

4 

30.9

6 

4.0

9 

55.8

7 
0 

0.3

8 

0.1

5 
- - - - - 

SVM 
0.2

7 

3.6

5 

27.7

3 
4.3 

51.6

3 

11.5

1 

0.6

5 

0.2

6 
- - - - - 

 BG 

L8 

MD 
7.5

8 

2.3

1 
- 

2.7

4 

17.7

7 
- 1.3 

1.7

3 

18.

2 

29.

9 

18.

5 
- - 

SAM 
9.2

9 

1.5

1 
- 

1.7

6 

21.0

7 
- 

1.7

3 

4.7

3 

17.

7 

26.

7 

15.

5 
- - 

ML 
7.0

3 
8.9 - 

3.6

2 

20.4

8 
- 

4.7

3 

1.7

8 

14.

2 
23 

16.

3 
- - 

SVM 
7.6

9 

2.6

4 
- 

1.0

8 

21.1

2 
- 

2.9

9 

2.5

1 

15.

5 

27.

5 

18.

9 
- - 

S1 

MD 
6.9

9 

14.

7 
- 

10.

2 

14.3

2 
- - - 

15.

2 

19.

7 

18.

9 
- - 

SAM 
11.

3 

13.

7 
- 

9.3

9 

12.6

4 
- - - 

20.

3 

14.

2 

18.

6 
- - 

ML - 
4.1

4 
- - 57.3 - - - - 

38.

6 
- - - 

SVM 
8.2

3 

1.5

6 
- 

20.

5 

24.9

7 
- - - 28 - 

16.

7 
- - 

S2 

MD 
7.8

3 

1.1

4 
- 

1.5

5 

22.2

5 
- - - 

18.

6 

27.

6 
21 - - 

SAM 
8.2

9 

0.7

7 
- 

1.1

2 

18.6

2 
- - - 

15.

9 
34 

21.

3 
- - 

ML 
7.8

4 

6.0

5 
- 

5.7

7 

22.5

6 
- - - 

16.

2 

23.

6 
18 - - 
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SVM 
7.9

7 

3.9

5 
- 

3.6

4 

20.6

1 
- - - 

19.

4 

26.

9 

17.

5 
- - 

 VM 

L8 

MD 
1.2

1 

50.

5 
- 13 17 - 

2.6

7 

0.9

1 
- - - 

5.6

8 

9.0

4 

SAM 1.1 
49.

9 
- 

11.

8 

11.7

7 
- 

2.9

2 
3 - - - 

7.2

9 

12.

3 

ML 
1.1

1 

58.

8 
- 

6.6

7 

16.8

6 
- 

1.6

8 

1.0

1 
- - - 4.6 

9.3

2 

SVM 2 
59.

3 
- 

6.4

9 

14.5

7 
- 3.3 

1.2

2 
- - - 

5.1

6 

7.9

7 

S1 

MD 
2.2

7 

35.

8 
- 

10.

5 

13.9

6 
- - - - - - 

24.

3 

13.

2 

SAM 
20.

6 

31.

1 
- 

17.

4 

12.7

3 
- - - - - - 

10.

1 

8.1

9 

ML 
2.0

8 
0 - 0 0 - - - - - - 0 

97.

9 

SVM 2.1 
51.

4 
- 

9.8

6 
12.1 - - - - - - 

8.8

5 

15.

7 

S2 

MD 
2.0

9 

45.

3 
- 

12.

3 

23.9

2 
- 

1.0

7 

0.9

1 
- - - 

6.6

4 

7.8

3 

SAM 
1.0

6 
43 - 

14.

4 

20.3

9 
- 

3.2

5 

2.9

4 
- - - 

5.4

1 

9.6

4 

ML 
0.8

8 

46.

9 
- 25 8.57 - 

0.7

7 
0 - - - 

16.

7 

1.1

6 

SVM 
0.8

8 

45.

5 
- 

7.1

5 

13.3

7 
- 

0.9

7 

20.

2 
- - - 

4.2

6 

7.6

9 
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1 = water bodies; 2 = human settlements; 3 = bare soil; 4 = cropland-pasture; 5 = 

cloud cover; 6 = shadows; 7 = xerophytic mesquite; 8 = thorny shrubs; 9 = mangroves; 

10 = submerged vegetation; 11 = flood prone zones; 12 = forest; 13 = shrub. 

 

For the BG region, the PC obtained with S2-SVM and S2-MD were 

similar to those obtained with L8-SVM (which had the highest OA). The 

combinations that overestimated or underestimated PC were all the 

combinations with S1. As previously observed, using S1 for regions similar 

to BG (humid tropical) with cloudy conditions less than 3 % would result 

in considerable errors that would need to be corrected. Frequent cloud 

cover significantly reduces the ability to use optical images and according 

to our findings, these should be occupied with cloud cover less than 3 %. 

Additionally, we do not recommend the L8-ML combination to study 

human settlements in regions similar to BG, since that would 

overestimate PC. 

For the VM region, the PC obtained with L8-SAM was comparable to 

S1-SVM and S2-SAM. The combinations that differed the most from what 

was obtained with L8-SAM were S1-SAM, S1-MD, and S2-ML, and 

therefore, they are not recommended. The PC obtained with L8 was 

similar to all the algorithms tested, which is a strong argument for 

recommending the use of this sensor with any of the classifiers for regions 

where urban land cover is predominant. 

 

 

Calculation of RC 
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Table 4 shows the factors that this study took into account to select the 

most useful image for calculating RC: start of the study period, TR, SR, 

SpR, and Sensitivity to weather conditions. At the bottom of the table, 

the obtained average OA by the sensor is included as a reference. The TR 

of S2 (five days) was better than that of L8 (16 days) and S1 (12 days). 

S2 began to acquire images in 2015 and L8 in 2012. L8 can be 

complemented with the Landsat series, which has been available since 

1972. S1 images have been available for all of Mexico since 2016. While 

S1 and S2 have the disadvantage of being only recently launched their 

SR is higher than that of L8 which makes it possible to distinguish LC 

having a small presence. For example, in BB, the SR of S2 made it possible 

to classify areas that had high contrast and covered a small area. 

Nevertheless, the size of the studied hydrological region should be 

considered, since a high SR requires a longer processing time and higher 

computing capacity. 

 

Table 4. Factors for selecting an image for the determination of LC to 

obtain RC. 

 Sensor 

Factor L8 OLI S1 SAR S2 MSI 

Start of the study 

period of the research 

to be performed 

1972* 2016 2015 

Historical Current Current 
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Suitable for studies 

TR [d] 

Suitable for studies 

16 16 5 

Every two weeks Every two weeks Weekly 

SR [m] 

Suitable for studies 

30 10 10 

Regional/Local Regional/Local Regional/Local 

SpR range [µm] 

 

 

Suitable for LC type 

0.48-2.2 37 500-75 000 0.44-2.19 

Water bodies, 

vegetation, bare 

soil, and human 

settlements 

Water bodies, 

vegetation, bare 

soil, and human 

settlements 

Water bodies, 

vegetation, bare 

soil, and human 

settlements 

Sensitivity to weather 

conditions 

 

Suitable for studies 

Yes No Yes 

Regions with little 

cloud cover 

Regions with large 

cloud cover 

Regions with little 

cloud cover 

(%) Average OA in the 

present study 
76.10 38.75 75.04 

 

All three sensors were able to distinguish the four main LC 

categories in the study: water, bare soil, human settlements, and 

vegetation. The greater number of bands in S2 did not result in a higher 

OA. Also, the three bands in S1 did not provide good classification results. 

Although this sensor is associated with the good classification of urban 

areas with a high SR (Goldewijk, 2001; Liu & Tian, 2010; Loperfido, Noe, 

Jarnagin, & Hogan, 2014), its use in the present study did not improve 

the results in the VM region (highly urbanized). Given the TR of the 

sensors used in this study, any one of them could be used to perform the 
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analysis presented by this investigation. S1 can be used with high cloud 

cover, in which case it will be helpful to use the combinations that the 

previous section indicated as having the highest accuracy. Certain actions 

are recommended to improve the classification results, such as post-

processing techniques, increasing the number of bands, and selecting 

training areas that have a larger number of pixels and spectral 

homogeneity (Congedo, 2016; Richards & Xiuping, 2013; Chuvieco, 

1991). Table 4 can be used as a reference for selecting the image. Data 

from S1 and S2 can be used if the project being conducted involves the 

study of current LC, but if the study includes historical changes it will be 

limited to the data from the Landsat series, which has generated images 

since 1972. All three sensors can be used for regional or local analyses, 

and enable identifying water bodies, vegetation, bare soil, and human 

settlements with a good degree of accuracy. After consulting Table 4 to 

select the most suitable sensor, we recommend that it be combined with 

the algorithm having the highest degree of accuracy, as reported by this 

study’s findings (Table 2). 

Figure 4 shows the RC results for each region, including the LC 

classification obtained with the sensor-algorithm combination having the 

highest OA, and four geographic layers: MP, ST, the resulting RC, and the 

RC from INEGI (2010) (official information) for comparison purposes. The 

following observations are applicable to all the study areas. The spatial 

distribution of the RC obtained by the present study is drastically different 

than those from INEGI’s hydrological chart, 2010. The information 

presented in the INEGI layers is much more general than the layers that 

resulted from our study. The information resulting from our study has a 
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higher SR (10 m). In the case of INEGI, the data are at a scale of 1:50 

000. INEGI’s RC values were not determined in a precise manner, but 

rather, there are five discrete categories, the highest of which is between 

0.10 and 0.20 for BB and VM, and ≥ 0.3 for BG. 

 

 

Figure 4. LC classifications were obtained with the sensor-algorithm 

combination having the highest OA and the layers MP, TS, resulting RC, 

and the RC from INEGI (official information), for the three regions 

studied. 
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In the case of BB, the combination that was selected was S2-MD. 

MP ranged from 470 to 620 mm and increased towards the southern 

portion of the hydrological region. The dominant ST was medium, with 

small areas of fine texture and very little thick texture in the north. The 

RC ranged from 0.17 to 0.28, with the latter exceeding the upper limit 

reported by INEGI (0.20). The spatial distribution was quite different from 

INEGI’s hydrological chart. The RC in the chart ranged from 0 to 0.5 % in 

the southeast and north, while our study resulted in a smaller RC for a 

larger area of the northern portion of the region. In our study, the highest 

values were found in the south, whereas the INEGI chart identified the 

northwest as having the highest values.  

For the BG region, the LC was obtained with L8-SVM. The lowest MP 

was 1 780 mm, which increased to nearly 2 000 mm towards the west. 

The dominant ST was fine, medium in the south, and thick in the north. 

The RC ranged from 0 to 1, with a predominance of values over 0.85. The 

highest RC values were in the western portion of the hydrological region, 

whereas the INEGI chart identified the central region as having the 

highest values.  

For the VM region, LC was obtained with the L8-SAM combination. 

The minimum MP was 570 mm, which increased to 1 190 mm towards 

the west. The dominant ST was fine, with the medium in the central region 

and thick in the northeast. The RC ranged from 0.17 to 0.6, with a 

predominance of values over 0.24. The highest values were found in the 

central portion of the region, which may be because the calculation used 

by the present study included MP as a variable that is important to the RC 
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value, considering that an immediate relationship between the two can 

be seen when visually comparing the RC results with the MP map. 

 

 

Conclusions 

 

 

This study presents findings and recommendations for selecting open-

access satellite images to calculate LC and RC based on the conditions of 

the study area. Nevertheless, the results and recommendations are 

applicable to any study that uses these types of images to determine LC. 

In our particular case, the characteristics of the sensors analyzed made it 

possible to obtain LC, which was needed to determine the RC for the study 

area. Different results were obtained with each one of the sensors. For 

the determination of LC, sensor L8 had the highest OA, on average, 

followed closely by S2, while S1 had the lowest values. Based on this 

study, the determination of LC should prioritize the use of MD and SVM, 

and avoid ML. This is an important finding given that ML is typically 

considered to be a standard algorithm and the first choice. Concerning 

SAM, this can be used in areas with characteristics that are similar to VM. 

High SR is helpful for determining LC in areas such as the BB region 

(semi-arid with a large amount of irrigated cropland and isolated human 

settlements). As a result, the best accuracies were obtained with S2. The 
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recommendation for regions that are similar to BB is to combine MD, SVM, 

and SAM with S2. ML should be avoided for this type of region. The LC for 

BB presented a high CC for xerophytic mesquite-thorny shrub and 

cropland-bare soil. We recommend that training areas for water bodies 

be carefully determined, given that they have a small presence in regions 

such as BB. Cropland-pasture is dominant in these regions, while water 

bodies and human settlements are scarce. For the BG region, L8-SVM had 

the highest OA. The use of the deep blue band seemed to indicate an 

improvement in the AC obtained from the determination of water bodies. 

In regions with climates that are similar to that of BG (high cloud cover 

and precipitation), the use of S1 with MD and SVM is an option, with the 

largest possible number of bands and post-processing techniques. Even 

though this has resulted in inaccuracies of 50 %, which can be explained 

by having occupied images with little cloud cover (< 3 %), it would not 

otherwise be possible to conduct studies with optical images, and with 

more cloudy conditions the results should improve. In this type of region, 

submerged vegetation, cropland-pasture, and flood-prone zones have the 

largest PC, while bare soil and human settlements have the smallest. 

Since L8-SAM was the best combination for the VM region, we recommend 

this option for similar regions (temperate climates with a predominance 

of urban zones). S2 is also recommendable. The use of S1 and the ML 

algorithm should be avoided in these regions.  

The selection of the ideal image for determining LC is a decision that 

should take into account the following factors: availability, TR, SR, SpR, 

study period, LC type and its dynamic, climate, and size of the study area. 

These should consider the following: 
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 Historical availability of data with TR: the Landsat series is 

useful for long-term analyses, and S1 and S2 for current 

analyses. 

 Periodicity of the analysis for TR: S2 is useful for weekly 

studies and the other three sensors for longer periods. 

 The scale of the project and SR: all of the sensors that were 

studied function for regional and local projects. 

 Type of LC and spectral bands (SpR). The sensors studied are 

capable of distinguishing the four groups that are determinants 

of RC: water, bare soil, human settlements, and vegetation. For 

other classes, we recommend performing the analysis of bands 

that were presented in this study. 

 Only radar sensors can be used for regions with high cloud 

cover, in spite of the low OA found in our study. 

By using this method to determine RC, accurate and updated values 

were obtained with a resolution of up to 10 m, on a continuous scale. This 

represents an advantage over the official information in countries such as 

Mexico whose INEGI’s hydrological chart groups regions into classes with 

values from 0 to 5 %, from 5 to 10 %, etc. The use of the RC maps 

obtained by this study will improve both the results from spatial hydrology 

analyses and the process for making spatially differentiated decisions. 
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