

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

DOI: 10.24850/j-tyca-2022-02-01

Articles

The conceptual and methodological framework of drought risk and its components: Hazard, exposure and vulnerability

Marco conceptual y metodológico del riesgo por sequía y sus componentes: amenaza, exposición y vulnerabilidad

Heidy Viviana Castellano-Bahena¹, ORCID: https://orcid.org/0000-0002-1387-516X

David Ortega-Gaucin², ORCID: https://orcid.org/0000-0002-5336-7442

¹Instituto Mexicano de Tecnología del Agua, Jiutepec, Morelos, México, heidyviv78@gmail.com

²Instituto Mexicano de Tecnología del Agua, Jiutepec, Morelos, México, dortega@tlaloc.imta.mx

Corresponding author: David Ortega-Gaucin, dortega@tlaloc.imta.mx

Abstract

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Drought risk reduction and its direct and indirect impacts have gained worldwide relevance during the last decades. This paper presents a review of the basic conceptual and methodological tools to analyze the drought risk in a given system. The fundamental components of risk are described, conceived primarily as a function of hazard (or specific danger, which in this case is the drought phenomenon); exposure (people, property, livelihoods, and systems that are subject to potential damage and loss due to hazard), and vulnerability (represented by the socio-economic and environmental conditions of the system that make it susceptible to suffering damage). The concepts and definitions associated with these components are explained and the most usual mathematical methods and models for calculating them are presented. It is concluded that, given the great diversity of approaches, concepts, and methods to determine drought risk, it is at the discretion of the researcher or evaluator the selection of the most appropriate depending on the approach adopted, the information available, and the objective or investigation context.

Keywords: Risk management, extreme phenomena, drought, climate change, vulnerability, adaptive capacity.

Resumen

La reducción del riesgo de sequía y sus impactos directos e indirectos ha cobrado relevancia mundial durante las últimas décadas. En este trabajo se presenta una revisión de las herramientas conceptuales y metodológicas básicas para analizar el riesgo por sequía en un sistema determinado. Se describen los componentes fundamentales del riesgo,

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-

sa/4.0/)

concebido principalmente como una función de la amenaza (o peligro específico, que en este caso es el fenómeno de la seguía); la exposición (personas, propiedades, medios de vida y sistemas que están sujetos a daños y pérdidas potenciales debido al peligro), y la vulnerabilidad (representada por las condiciones socioeconómicas y ambientales del sistema que lo hacen susceptible de sufrir daños). Se explican los conceptos y definiciones asociados con estos componentes, y se presentan los métodos y modelos matemáticos más usuales para calcularlos. Se concluye que, dada la gran diversidad de enfoques, conceptos y métodos para determinar el riesgo por seguía, queda a criterio del investigador o evaluador la selección del más apropiado en función del enfoque adoptado, la información disponible, y el contexto u objetivo de la investigación.

Palabras clave: gestión del riesgo, fenómenos extremos, seguía, cambio climático, vulnerabilidad, capacidad de adaptación.

Received: 25/02/2020

Accepted: 13/02/2021

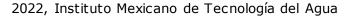
Introduction

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

In recent decades, disasters caused by natural phenomena have increased globally, mainly due to an increase in the population's vulnerability and partly due to changes in the hazard's characteristics (IPCC, 2012). Increased exposure of the population to extreme climatic and hydrometeorological events has resulted in more disasters. Therefore, the impact of disasters on human activities has been addressed in several publications over the past years, which have been developed by different disciplines conceptualizing risk components in different forms, although in most cases in a similar manner (for example, UNDRO, 1979; Cardona, 1985; Cardona, 2001; Schneiderbauer & Ehrlich, 2004; Davis, 2004; Jordaan, 2006; Burg, 2008). In general terms, most conceptual proposals indicate that disaster risk is reduced by linking the threat or hazard, i.e., the probability of occurrence of a specific event, the vulnerability of the exposed elements, or the internal selectivity factor of the effects' severity on said elements (Figure 1a). Studies associated with this risk concept are, for example, those Yen (1971); Cardona (1985); Cardona (1993); Blaikie, Cannon, Davis, and Wisner (1994); Wisner, Blaikie, Cannon, and Davis (2003), and Tsakiris (2007). However, this concept of risk has changed; for instance, the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014) determined that the risks of climate change stem from an overlap between vulnerability (lack of preparation), exposure (people or assets at risk),

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

and hazard (which trigger phenomena or climatic trends), as shown in Figure 1b.


Figure 1. (a) Interaction of risk with hazard and vulnerability; (b) Interaction of risk with the threat (hazard), vulnerability, and exposure. Source: Adapted from Wood (2011) and IPCC (2014).

Each of the a forementioned components can be subject to selective measures to reduce risks (Ortega-Gaucin, López, & Arreguín, 2016). In addition, there are studies that conceptually and methodologically describe the interaction of risk components (without focusing on the analysis of a specific threat or hazard), such as those by Cardona (1993), Blaikie *et al.* (1994), Hoddinott and Quisumbing (2003), BID (2003), Schneiderbauer and Ehrlich (2004), Jordaan (2006), Tsakiris (2007), Birkmann (2007), and Welle and Birkmann (2015), among others.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

However, explicitly concerning drought risk, we found a limited review of the mathematical models used to calculate it since research focuses on analyzing one risk component, be it hazard or vulnerability, without a theoretical or methodologically approach to the interaction between both variables. Such as studies by Gibbs, Maher and John (1967); Bergaoui and Alouini (2001); Bhuiyan (2004); Boken (2005); Narasimhan and Srinivasan (2005); Velasco, Ochoa and Gutiérrez (2005); Chandrasekar, Sai, Roy, Jayaraman and Krishnamoorthy (2009), and Tsakiris et al. (2013). Thus, the present study seeks to conceptually and methodologically review and describe the most common ways to evaluate hazard, exposure, vulnerability, and drought risk. In this manner, this study's aim consists in concisely providing a broad panorama to be used as a basis to evaluate risk in the face of this natural hazard. The following sections describe each risk component in detail: starting with the hazard, presenting the main concepts associated with the drought phenomenon, such as the types of drought mentioned in literature and the most frequent methods used to characterize and evaluate the severity of the phenomenon; subsequently, exposure is analyzed describing the concept, its fundamental dimensions, and the indicators used to measure it; then, vulnerability is detailed, including the most common definitions, their components, characteristics, and methods to calculate vulnerability; after that, the different risk definitions and the mathematical models used to determine risk quantitatively are described; and finally, some considerations about the analyzed concepts and conclusions derived from the study are presented.

Hydrometeorological threat or hazard

The hydrometeorological threat or hazard is a process or phenomenon of atmospheric, hydrological, or oceanographic origin that can result in death, injury, health impacts, loss of livelihoods and services, socioeconomic damages, or environmental damage (UNISDR, 2009). Generally, the hazard is estimated using historical meteorological or climatic information. It is represented by the probability of a particular meteorological or climatic phenomenon occurring (for example, tropical cyclone, torrential rain, drought). In this case, the relevant hazard is the phenomenon of drought understood in its broadest sense, that is, a severe and lasting decrease of precipitation capable of causing severe hydrological imbalances and affecting human activities and ecosystems (OMM & GWP, 2006). Thus, drought hazard refers to the probability of a drought event taking place in a specific spatial and temporal frame with enough intensity to cause damage. Hazard values vary from one region to another and depend on the specific characteristics of the studied phenomenon (Magaña, 2013). Definitions and types of drought, their

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

parameters, and the main methods to determine their characteristics (duration, magnitude, severity, spatial extent, etc.) are described in the following sections.

Definition and types of drought

Drought is mainly initiated by deficient precipitation and is considered a natural phenomenon related to climatic variability in a region (Tsakiris *et al.*, 2013). There are various drought definitions, adapted to specific economic sectors, climatic regions, and regional conditions (Wilhite & Glantz, 1985; Correia, Santos, & Rodrigues, 1991; Tate & Gustard, 2000), but none is universally accepted because drought is a relative phenomenon whose characteristics vary from one place to another. Thirty-six years ago, Wilhite and Glantz (1985) found more than 150 definitions of drought published in the literature and classified them into four groups according to the scientific discipline used to analyze the phenomenon and its impacts: meteorological drought, agricultural drought, hydrological drought, and socioeconomic drought. Currently, this classification is still valid and is widely used in specialized scientific articles (for example, Bootsma, Boisvert, & Baier, 1996; Barakat & Handoufe,

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

1998; Wilhite, 2000; Valiente, 2001; Bergaoui & Alouini, 2001; Boken, 2005; Mishra & Singh, 2010). The first three types of drought (meteorological, agricultural, and hydrological) address ways to measure drought as a physical phenomenon; the last approach (socioeconomic drought) addresses drought in terms of supply and demand by tracking the effects of water deficit spreading through socioeconomic systems. Meteorological drought is defined as a function of the degree of rain decrease compared to a "normal" or average amount of rain and the duration of the dry period. Agricultural drought links various characteristics of meteorological (or hydrological) drought agricultural impacts, focusing on precipitation scarcity, differences between actual and potential evapotranspiration, and soil hydrological deficits. Hydrological drought is associated with the effects of deficit precipitation periods on surface or groundwater supply. Socioeconomic drought differs from the previously mentioned types of drought because its occurrence depends on water supply and demand processes at a given time and space. Figure 2 shows the evolution sequence of the different types of drought described.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

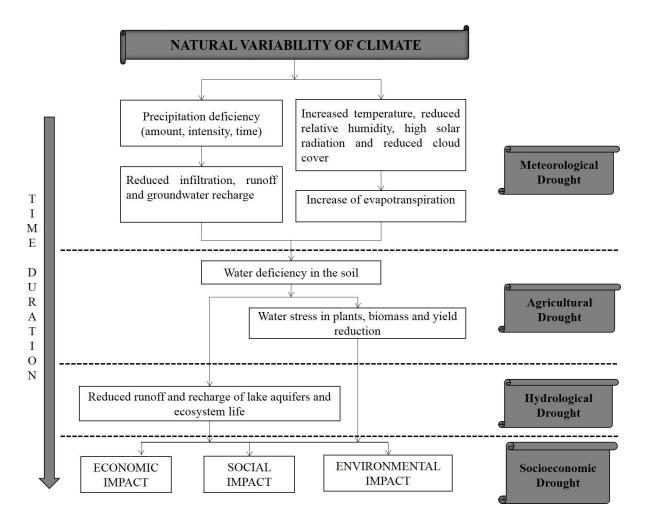
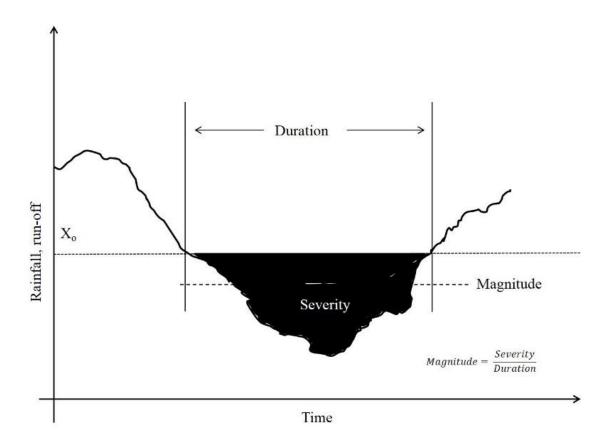


Figure 2. Evolution sequence of the different types of drought.

Source: Modified from NDMC (1995).



Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Drought parameters

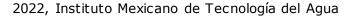

Operational definitions of the different types of drought need to be translated into a numerical format (parameters) to specify dry events' characteristics (Valiente, 2001). From the meteorological and hydrological points of view, the basic drought parameters are (Burton, Kates, & White, 1978; Dracup, Lee, & Paulson, 1980): magnitude, which is the mean precipitation or flow deficit during the dry period; severity, which is the cumulative flow or precipitation deficit for the duration of the dry period; the duration, which is the time (total number of days, months, or consecutive years) during which the total precipitation or flow is lower than the mean precipitation or flow for the same period. In addition, the above parameters are a function, among other factors, of the truncation level (X_0); at this reference point, lower values represent a deficiency and probably a drought, as measured by the amount of rain or runoff (Velasco et al., 2005), as shown in Figure 3.

Figure 3. Basic parameters to characterize drought from the meteorological and hydrological perspectives. Source: Adapted from Velasco *et al.* (2005).

When analyzing drought from agricultural and socioeconomic points of view, it is difficult to determine its characteristics based on the parameters described above. Therefore, a great diversity of assessment methods and models based on indices and indicators have been created and used for each type of drought, as described in the next section.

Drought assessment methods

Currently, a wide variety of indicators and indices are available to characterize drought, mainly from the meteorological, agricultural, and hydrological perspectives, each with advantages and disadvantages that limit or favor its application in a given setting (Byun & Wilhite, 1999; Heim, 2002; Hayes, Svoboda, Wall, & Widhalm, 2011). *Indicators* are variables or parameters used to describe drought conditions, for example, precipitation, temperature, streamflow, groundwater and reservoir water levels, soil moisture, among others. *Indices* are usually computerized numerical representations of drought severity, determined by climatic or hydrometeorological data, which include the mentioned indicators intended to analyze the drought's qualitative state in a given period. However, similarly to there being no single definition of drought, no index or indicator can be attributed to and applied to all types of drought, climate regimes, and drought-affected sectors (OMM & GWP, 2016).

Meteorologically, drought indicators are associated with climatic variables such as precipitation, temperature, and evapotranspiration (Wilhite, 2005). Common indices to characterize meteorological drought include the Deciles; the Rainfall Anomaly Index (RAI); the Standardized Precipitation Index (SPI); the Effective Drought Index (EDI); and the

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Standardized Precipitation Evapotranspiration Index (SPEI). From the agricultural perspective, drought indicators consider soil moisture data to detect crop drought situations and focus on anomalies in soil moisture values concerning season and location (Wanders, Van-Lanen, & Van-Loon, 2010), for instance, the Palmer Drought Severity Index (PDSI); the Soil Moisture Anomaly (SMA); the Evapotranspiration Deficit Index (ETDI); and the Soil Moisture Deficit Index (SMDI). Additionally, satellite remote sensing indices identify vegetation health status and help identify and characterize drought in agriculture; some of these indices include the Normalized Difference Vegetation Index (NDVI) and the Vegetation Health Index (VHI). Lastly, hydrological drought indicators refer to hydrological system variables, mainly groundwater levels, streamflow, and reservoir storage (Wanders et al., 2010). Indices derived from these indicators include the Palmer Hydrological Drought Index (PHDI); the Surface Water Supply Index (SWSI); the Standardized Water-Level Index (SWI); the Standardized Streamflow Index (SSFI); the Streamflow Drought Index (SDI); and the Standardized Reservoir Supply Index (SRSI). Table 1 presents the origins, applications, advantages, and disadvantages of each of the indices mentioned above. For a more detailed description of each of them and specific recommendations on their use, review the Handbook of Drought Indicators and Indices (OMM & GWP, 2016). For instance, the handbook mentions that in 2009 the WMO recommended the use by countries of SPI as the primary index to monitor and track meteorological drought conditions.

Table 1. Characteristics of commonly used drought indices.

Type of droug ht	Index	Input variables *	Origin and applications	Advantages	Disadvantages
cal	Deciles	P	Created by Gibbs and Maher (1967) at the Australian Bureau of Meteorology. It can be used where the complete precipitation records for a period (preferably more than 30 years) and a place is available, which is used to classify the frequency and distribution of rainfall	only one variable, it is a flexible and useful method in situations of humidity and drought	temperature and other variables during the
Meteorologi	Meteorological A IAS		Developed by Van-Rooy (1965). It uses standardized values of precipitation based on the station's record in a particular place. The comparison with the current period is used to analyze the product from a historical point of view	monthly, seasonal, and	It requires complete serial data, and interannual variations should be minor compared to temporal variations
	SPI	Р	Created by McKee, Doesken, and Kleist (1993) at Colorado State University (United States). It is a	It only requires monthly precipitation data, and it can be calculated at different time scales,	It does not consider the temperature component, which is important for the

Type of droug ht	Index	Input variables *	Origin and applications	Advantages	Disadvantages
			standardized index that can be applied to all climate regimes and for different time scales	to monitor the effects of meteorological drought	and the water use in a
	EDI	P		·	-

Type of droug ht	Index	Input variables *	Origin and applications	Advantages	Disadvantages				
	SPEI	P, T	Created by Vicente-Serrano, Beguería and López-Moreno (2010) at the Pyrenean Institute of Ecology (Spain). It uses SPI as a basis but takes into account the effect of temperature on droughts. It is applied anywhere in the world with records of complete series of monthly precipitation and temperature data	temperature data, it is ideal for observing climate change's effect on model results under different future assumptions	precipitation and temperature data. As it				
Agricultural	PDSI	P, T, AWC	(1968) at the U.S. Weather Bureau to evaluate droughts affecting agriculture in the	detecting droughts due to using soil data and a total water balance methodology	complete serial data can be problematic. It has a				
	SMA	P, T, AWC	Created by Bergman, Sabol, and Miskus (1988) at the		It is challenging to calculate due to the				

Type of droug ht	Index	Input variables *	Origin and applications	Advantages	Disadvantages
			Service, as a method to evaluate global drought conditions. It can be used where weekly or monthly	moisture, which are the fundamental aspects of water balance	•
			data on temperature, precipitation, and soil moisture retention capacity values are available		
	ETDI	Mod	Created by Narasimhan and Sriniviasan (2005) at the Texas Agricultural Experiment Station (United States). It is a useful weekly result to determine water stress in crops. Applicable for modeled data obtained from a hydrological model using the SWAT model	and potential evapotranspiration and allows for the detection	the index increased during the summer
	SMDI	Mod	Created by Narasimhan and Sriniviasan (2005) at the Texas Agricultural Experiment Station. It is a weekly soil moisture product calculated at	complete soil profile and depths, which makes it suitable for	The information needed to calculate the index is based on the result of the SWAT (Soil & Water Assessment Tool) model. There are

Type of droug ht	Index	Input variables *	Origin and applications Advantages		Disadvantages					
			different depths. Applicable for modeled data obtained from a hydrological model using the SWAT model		autocorrelation problems when all depths are used					
	NDVI	Sat	Developed Tarpley, Schneider, and Money (1984), and Kogan (1995) in the National Oceanic and Atmospheric Administration (NOAA). It uses data obtained from NOAA's AVHRR satellite. For monitoring agricultural droughts around the world	satellite data to monitor the health of vegetation concerning drought events. Very high resolution and excellent	essential for the index, a phase in which a robust system is necessary. Satellite					
	VHI	Sat	Created by Kogan (1990) at NOAA. It is derived from the NDVI. It is used to detect and monitor droughts affecting agriculture around the world	coverage and high	•					
Hydrological	PHDI	P, T, AWC	Part of the set of indices created by Palmer (1965) in the U.S. Weather Bureau. It is based on the original PDSI and modified to consider	method allows for the analysis of the entire						

Type of droug ht	Index	Input variables *	Origin and applications	Advantages	Disadvantages				
			long-term drought that influences hydrological components						
	SWSI	P, SF, RD,	·	good indication of the overall hydrological health of a specific	change, the complete index must be recalculated, making it challenging to produce				
	SWI	GW	Created by Bhuiyan (2004) at the Indian Institute of Technology to evaluate groundwater recharge deficits. It is used where well-level data are available	on groundwater, an essential water supply	water is not accounted				

Type of droug ht	Index	Input variables *	Origin and applications	Disadvantages				
	SSFI	SF	(2007). It uses monthly values of streamflow and	streamflows, an essential component for water supply to reservoirs and other	streamflows in the context of drought			
	SDI	SF	Developed by Nalbantis and Tsakiris (2008) in Greece, based on SPI methodology and calculations. It allows for the analysis of wet and dry periods, similar to SPI but based on monthly streamflow data. A historical series of flow and water level data is required	of the effect of drought on streamflows at				
	SRSI	SF, RD	, , ,	specific reservoir system, and it provides useful information to	changes caused by reservoir management			

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Type of droug ht	Index	Input variables *	Origin and applications	Advantages	Disadvantages
			there are monthly records of reservoirs inflow and average reservoir storage volumes	water supply and irrigation suppliers	

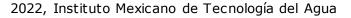
*Key to variables: GW = Groundwater; AWC = Available Water Content; SF = Streamflows; RD = Reservoir; S = Snowpack; Mod = Modeled; P = Precipitation; Sat = Satellite information; T = Temperature. Source: Adapted from OMM and GWP (2016).

In recent years, due to the high relevance and contribution of artificial intelligence-based methods to the modeling and prediction of hydrological and climatic processes (Ardabili, Mosavi, Dehghani, & Varkonyi-Koczy, 2019), *learning machine* techniques have been used in combination with drought indices for drought assessment, monitoring, and forecasting. For example, Rhee and Im (2017) developed a high-resolution drought forecasting model in South Korea using the technique of the extremely randomized tree and the SPI and SPEI indices; conversely, Deo and Sahin (2015) used the extreme learning machine algorithm to predict the EDI index in Australia; Park, Im, Jang and Rhee (2015) used three machine learning approaches (random forest, decision trees) in conjunction with the SPI and NDVI indices to evaluate and monitor meteorological and agricultural drought in the United States; Feng, Wang, Liu and Yu (2019) adopted three advanced machine learning methods (random forest with bias correction, support vector machines,

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

and neural networks) in combination with the SPEI to improve predictions of agricultural drought in southeastern Australia; and Zhang, Chen, Xu and Ou (2019) used the artificial neural network method and the SPEI to predict meteorological droughts in the province of Shaanxi, China; among other studies.

However, despite the utility of drought indices to monitor, evaluate, and forecast drought (meteorological, agricultural, and hydrological), none evaluate the socioeconomic impact of drought. Therefore, this impact's evaluation is considered an unresolved problem and, to a certain extent, an impossible mission (Marcos, 2001); this is because the drought phenomenon causes a complex and intricate network of economic, social, and environmental effects that accumulate gradually and can persist even years after the end of the event (Ortega-Gaucin, 2012a). Moreover, the information generated around the phenomenon is usually scarce and scattered, making it difficult to calculate its effects and severity accurately, reliably, and timely, and, in the end, prevents or significantly limits the formulation of contingency plans by most of the governments in the affected countries (Wilhite, 2000). Therefore, due to the very nature of the phenomenon, there is no single definitive answer to the question: What is drought's socioeconomic impact? Total and sectoral impacts will depend on the duration and territorial extension of the phenomenon; the amount of water availability reduction (Ortega-Gaucin, 2012b), along structural and relevant economic conditions, including the development stage and affected crop prices (Sisto, Guajardo-Quiroga, & Aguilar-Barajas, 2011), among other variables. The water shortage



Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

impacts translate into lower production and income since the volumes available during the drought period are insufficient to meet the water demand under normal conditions. Thus, economic drought assessment is based on concepts such as productivity, income, efficiency, and unemployment (Sisto *et al.*, 2012). For the agricultural and livestock sector, economic analyzes based on harvested and lost crops, production volume, production value, lost livestock, etc., provide indicators of drought impact and reflect, perhaps better than other sectors, the severe adverse effects hydrological deficit has on a resource-dependent field (Velasco, 2002; Ortega-Gaucin, 2012a; Ortega-Gaucin, 2012b).

However, to manage drought risk effectively, it is vital to understand the possible impacts, albeit in relative terms, and to identify who will be at risk and why. Therefore, assessing hazard, exposure, vulnerability, and risk entails, in a certain sense, the prediction of the seriousness and extent of the hazard, and its possible effects on the economy and society, while simultaneously allowing decision-makers to design measures to prevent and mitigate the impact (Ortega-Gaucin & Velasco, 2015). Hence the importance of analyzing and evaluating these variables.

Drought exposure

The IPCC (2014) defines exposure as the presence of people, properties, livelihoods, and systems that are prone to potential damage and losses. In recent years, increased population exposure to extreme meteorological events has resulted in more disasters. Exposure is a factor that generates vulnerability; if there is no exposure to a specific phenomenon, then there is no risk (Magaña, 2013). About meteorological and agricultural drought, for instance, exposure includes rainfed crops, the farmers and ranchers who are at risk of losing their jobs, food, and income (Ortega-Gaucin, Dela-Cruz-Bartolón, & Castellano-Bahena, 2018a); for hydrological drought, it includes all users of surface and groundwater, such as irrigation districts and units, hydroelectric plants, urban and industrial public users, and all people from rural areas lacking sufficient water to carry out their daily activities.

Characteristics that influence exposure assessment

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

According to a study conducted by the Inter-American Development Bank (Cardona, 2005), the indicators most suited for measuring physical susceptibility or exposure to any kind of disaster are those reflecting the susceptibility of populations, assets, investments, production, sustenance means, essential patrimony, and human activities; indicators of this kind are also those reflecting the growth and population density rates. According to Füssel (2005), climate-related exposure assessments must consider the characteristics or factors of the exposed system, the type and number of stress factors and their main causes, their effects on the system, and the time horizon of the evaluation, as shown in Table 2.

Table 2. Fundamental dimensions describing the exposure situation.

Dimension or Characteristic	Question	Possible options
	Who or	A community, a geographical
System/Method	what is	region, an economic sector, a
	exposed?	natural system
		Anthropogenic climate change,
Hazard (or threats or	Exposed	natural climate variability,
stress factors)	to what?	atmospheric composition, other
		non-climatic factors

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Dimension or Characteristic	Question	Possible options
Consequences (or effects or valued	What is at	Ecosystem's viability, food security, human health,
attributes or variables of interest)	risk?	economic goods, other valued goods, and services
Temporal and spatial scale	What time frame? Which	Months, years, decades, centuries State, municipality, watershed, hydrological region, country,
	region?	continent

Source: Prepared by the authors based on Füssel (2005).

Exposure to drought increases poverty (Carter, Little, Mogues, & Negatu, 2007; Dercon, 2004). The impact of disaster risk on poverty is visible (losses in the event of a disaster), and less obvious: households exposed to meteorological risk reduce their investment in productive assets and select low risk and low yield activities (Cole *et al.*, 2013; Elbers, Gunning, & Kinsey, 2007). This link of exposure to poverty in the presence of natural hazards can create a feedback loop in which poor households have no choice but to settle in risk zones and, therefore, face greater challenges to escape poverty (Winsemius *et al.*, 2018).

Methods to calculate exposure

The most widely used methods to evaluate exposure are based on socioeconomic and environmental indicators; these indicators are often combined to produce composite indices that represent the different components of vulnerability, exposure, and risk (Hagenlocher *et al.*, 2019). This methodological approach contributes to better understanding the multidimensional nature of this variable—this is especially useful in decision-making processes aimed at reducing vulnerability.

Mathematical models

Some studies consider exposure a component of vulnerability (Burg, 2008; Ortega-Gaucin *et al.*, 2018a; Ortega-Gaucin, De-la-Cruz-Bartolón, & Castellano-Bahena, 2018b; Fontaine & Steinemann, 2009), based on

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

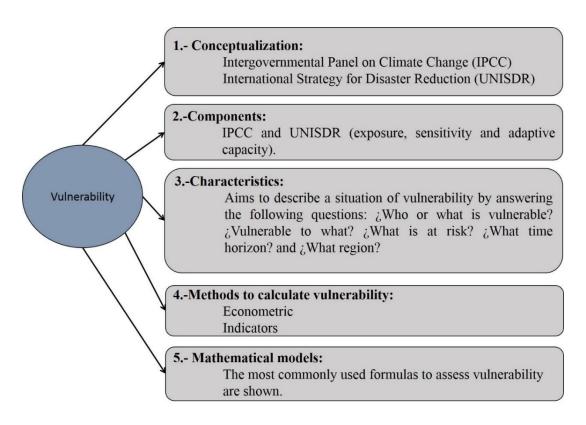
the IPCC (2001) definition for vulnerability. However, other studies consider drought exposure a component of risk independent of vulnerability (Carrao, Naumann, & Barbosa, 2016; Frischen, Meza, Rupp, Wietler, & Hagenlocher, 2020; Ortega-Gaucin, Ceballos-Tavares, Ordoñez, & Castellano-Bahena, 2021), based on the IPCC (2014) risk concept. Nevertheless, regardless of the adopted conceptual framework, several mathematical models have been proposed to calculate exposure. Peduzzi, Dao, Herold, and Mouton (2009) presented a model of the factors affecting human losses from natural hazards at a global scale for the 1980-2000 period, the purpose was to monitor risk evolution. The combination of average annual hazard frequency and the exposed populations provides the physical exposure. Welle and Birkmann (2015) provided a new approach to assessing risk from natural hazards at the country level. Carrao et al. (2016) proposed a non-compensatory model of drought exposure to estimate the potential losses of different types of drought-related disasters. Winsemius et al. (2018) investigated the global exposure of poor people to floods and droughts in 52 countries. Ahmadalipour, Moradkhani, Castelletti, and Magliocca (2019) evaluated the national risk of drought in Africa. Ortega-Gaucin et al. (2021) determine the agricultural drought risk in Zacatecas, Mexico. Table 3 displays the mathematical models used by the aforementioned authors to calculate exposure.

Table 3. Most common mathematical models to calculate exposure.

Author	Formula	Description			
Peduzzi <i>et al</i> . (2009)	$PhExp = \sum_{i}^{n} F Pop_{i}$	Where: $PhExp$ = Average annual physical exposure for the spatial unit (exposed population/year); F = Annual frequency of an event of given magnitude (event/year); Pop_i = Total population living in the spatial unit for each event " i " (exposed population/event); n = Number of events considered			
	$PhExp = \sum \frac{Pop_i}{Y_n}$	Where: $PhExp$ = Average annual physical exposure for the spatial unit (exposed population/year); Pop_i = Population living in the affected area for each event " i " (exposed population/event); Y_n = period (year)			
Welle and Birkmann (2015)	$Exp = \frac{A + B + C + (0.5 * D + E)}{N}$	Where: Exp = Exposure; A = People exposed to earthquakes; B = People exposed to storms; C = People exposed to floods; D = People exposed to drought; E = People exposed to sea level rise; N = Population number			
Carrao <i>et al</i> . (2016)	$de_i = \overline{OR_i}/\overline{OR'}_i$	Where: de_i = Exposure to drought; $\overline{OR_i}$ is the multivariate distance between the origin and the indicators real values observed for region i ; and $\overline{OR'}_i$ is the distance between the origin and the projected regional values at the maximum exposure limit			
Winsemius et al. (2018)	$I_p = \frac{f_p}{f} - 1,$	Where: I_P is the poverty exposure bias (PEB), f_P and f are the fraction of people exposed to floods/droughts in the country, respectively			
Ahmadalipour et al. (2019)	$Exp = rac{Esposición_{fut;p}}{Exposición_{hist}}$	Where: Exp = Exposure; hist and fut indicate historical and future periods; and p population scenarios (low, medium, and high)			

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Ortega-		Where:	DE.	I =	Drοι	ıght	Exp	osur	e Ind	ex;	X_i is	s th	ne
J	$\sum_{n=1}^{\infty}$	normalize	ed	value	of	indi	cator	i;	W_i is	the	weig	ht	of
Gaucin <i>et al.</i>	$DEI = \sum X_i W_i$	normalize	۵d	indica	tor	į.	n ic	the	numb	er c	f dr	oual	ht
(2021)	$\overline{i=1}$					',	11 13	CIIC	Harrib	Ci C	ı uı	ougi	10
		exposure	e inc	dicator	rs								


Source: Developed by the authors.

For a drought exposure index to be easy to use and process, its formulation should rest on a small number of indicators reflecting relevant and guiding aspects of the type of action to be carried out by decision-makers. This set of indicators by themselves, and especially when disaggregated at the local level, could facilitate the identification and orientation of actions to be promoted, strengthened, or prioritized to achieve a higher level of safety from hazards. Consequently, a small number of all possible indicators must be selected based on data availability, personal judgment, or previous research (Ortega-Gaucin *et al.*, 2018b; Ortega-Gaucin *et al.*, 2021).

Vulnerability to drought

Assessments of vulnerability to drought are the first step in identifying the underlying causes of its impacts (González, Urquijo, Blauhut, Villarroya, & De-Stefano, 2016). Vulnerability to drought is a complex phenomenon; therefore, it is essential to fully understand the phenomenon to design effective preparation and mitigation strategies and support policies and programs (Patrick, 2003). The concepts and methodological aspects most frequently used to evaluate vulnerability to drought are described below (Figure 4).

Figure 4. The methodological diagram to evaluate vulnerability to drought. Source: Developed by the authors.

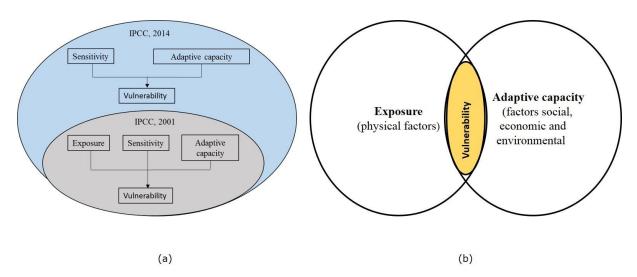
Conceptualization of vulnerability

The concepts and definitions of vulnerability have been analyzed by authors such as Timmerman (1981); Kates (1985); Chambers (1989); Downing (1991); Anderson (1994); Blaikie *et al.* (1994); Bohle, Downing, and Watts (1994); Downing and Bakker (2000), and Birkmann (2007), among others. Based on the concepts used by these authors, in general, vulnerability is a condition of frailty or weakness of an individual or system to a hazard (be it of physical origins such as drought, earthquakes, floods, or anthropogenic such as accidents, devaluations, economic crises); it has a multifaceted and multidimensional nature; it is dynamic both spatially and temporally, and it is linked to a specific hazard. In this case, the hazard we are interested in is the drought phenomenon. Concerning this, González *et al.* (2016) state that most definitions of vulnerability applied to drought and other climatic phenomena are based on the definitions of the IPCC (IPCC, 2001; IPCC, 2014) and the United Nations Office for Disaster Risk Reduction (UNISDR, 2009), shown in Table 4.

Table 4. Vulnerability definitions are based on the IPCC and UNISDR.

	Concept origin		
Concept	IPCC		UNISDR (2009)
	IPCC (2001)	IPCC (2014)	
		predisposition to be negatively affected	The characteristics and circumstances of a community, system, or property make it susceptible to the harmful effects of a hazard
Objective	Considers the assessment of vulnerability as the expected result of the analysis	how to reduce and manage	Its purpose is to highlight the means to reduce disaster risk. Considers vulnerability as a step in the risk assessment process

Source: Adapted from IPCC (IPCC, 2001; IPCC, 2014), González et al. (2016) and Brooks (2003).


Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Based on these concepts, vulnerability to drought can be understood as the degree to which a system is susceptible to and unable to cope with the adverse effects or damage caused by this natural phenomenon. Thus, vulnerability is associated with the potential impacts of drought events and has been used to evaluate socio-economic and environmental systems' susceptibility to this hazard. Examples, where the IPCC (2001) definition is applied, are the studies by Chandrasekar et al. (2009); Deems (2010); Flörke, Wimmer, and Laaser (2011); Antwi-Agyei, Fraser, Dougill, Stringer, and Simelton, (2012), and De-Stefano, González, Ballesteros, Urquijo, and Blauhut (2015). The IPCC (2014) definition is used by Bouroncle et al. (2016), Guo et al. (2019), Meza et al. (2020), and Frischen et al. (2020). Finally, about the UNISDR (2009) definition, examples of its use can be found in the studies by Iglesias, Moneo, and Quiroga, (2007); Adepetu and Berthe (2007); Cheng y Tao (2010); Zarafshani et al. (2012); Naumann, Barbosa, Garrote, Iglesias, and Vogt (2013), and Safavi, Esfahani, and Zamani (2014).

Components of vulnerability

Initially, the IPCC (2001) proposed the vulnerability concept as a function of a system's exposure to climate variation, sensitivity, and adaptive capacity. However, in its fifth assessment report, the IPCC (2014) modified the understanding of these terms, leaving vulnerability only as a function of a system's sensitivity and adaptive capacity (Figure 5a). The exposure component became part of the risk concept, as will be later described. For its part, UNISDR (2009) states that the components of vulnerability are exposure and adaptive capacity (Figure 5b). Table 5 describes each of the mentioned components based on the concept's origin.

Figure 5. Components of vulnerability according to the IPCC (a) and UNISDR (b) approaches. Source: Adapted from IPCC (IPCC, 2001; IPCC, 2014) and UNISDR (2009).

Table 5. Components of vulnerability according to the IPCC and UNISDR approaches.

sa/4.0/)

Concept	Components		
origin	Exposure	Sensitivity	Adaptive capacity
IPCC (2001)		which a system is affected, in a detrimental or beneficial sense,	climate change (including climate
IPCC (2014)	people; means of subsistence;	which a system is affected, whether adversely or beneficially, by	It is the adjustment process to the actual or projected climate and its effects. In human systems, adaptation seeks to moderate or avoid damages or take advantage of beneficial opportunities. In some natural systems,

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Concept	Components		
origin	Exposure	Sensitivity	Adaptive capacity
	economic, social,		human intervention
	or cultural assets		can facilitate
	in places and		adjustment to the
	environments		projected climate and
	that could be		its effects
	adversely		
	affected		
	Refers to		The ability of the
	population,		population,
	properties,		organizations, and
	systems, or other		systems to face and
	elements present		manage adverse
	in areas where		conditions,
	hazards exist and		emergencies, or
UNISDR	are therefore		disasters by using
(2009)	exposed to		available resources and
	experience		skills
	potential losses.		
	Measurements of		
	the degree of		
	exposure can		
	include the		
	number of people		

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Concept	Components			
origin	Exposure Sensitivity Adaptive capacity			
	or types of assets			
	in an area			

Source: Adapted from IPCC (IPCC, 2001; IPCC, 2014) and UNISDR (2009).

The most accepted and used of the previous conceptual approaches by the scientific community in recent years is the one proposed by the IPCC (2014), which defines vulnerability as a function of the sensitivity and adaptive capacity of the analyzed systems, as observed in the increasing number of studies using it (Bouroncle *et al.*, 2016; Guo *et al.*, 2019; Frischen *et al.*, 2020; Meza *et al.*, 2020, among others).

Characteristics that influence vulnerability assessment

According to Füssel (2005), climate-related vulnerability assessments must consider the characteristics or factors of the vulnerable system, the

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

type and number of stress factors and their main causes, their effects on the system, and the assessment time frame, as shown in Table 6.

Table 6. Fundamental characteristics describe a situation of vulnerability.

Characteristic	Question	Possible options
System/Method	Who or what is vulnerable?	A community, a geographical region, an economic sector, a natural system.
Hazard (or threats or stress factors)	Vulnerable to what?	Anthropogenic climate change, natural climate variability, atmospheric composition, other non-climatic factors.
Consequences (or		Ecosystem's variability, food
effects or valued	What is at	security, human health, economic
attributes or	risk?	goods, other valued goods, and
variables of interest)		services.
	Time: What	Years, decades, centuries.
	time frame?	rears, decades, ceritaires.
Scale:	Spatial:	State, municipality, watershed,
	Which	hydrological region, country,
	region?	continent.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Source: Adapted from Füssel (2004).

Methods to calculate vulnerability

The most commonly used methods in the literature related to climate change are the econometric method and indicator-based methods (Table 7). The econometric method, rooted in the literature on poverty and development, uses socioeconomic survey data at the household level to analyze the level of vulnerability of different social groups (Hoddinott & Quisumbing, 2003). Indicator-based methods are based on selecting some variables from the entire set of potential indicators and then systematically combining them to evaluate vulnerability levels (Cutter, Boruff, & Shirley, 2003; Kaly & Pratt, 2000).

Table 7. Methods to calculate vulnerability.

sa/4.0/)

	Indicator-based
Econometric method	methods
The method is divided into three	They are based on
categories: vulnerability as expected	selecting some
poverty (VEP), vulnerability as a low	indicators from the
expected utility (VEU), and	entire set of potential
vulnerability as uninsured exposure	indicators and then
to risk (VER) (Hoddinott &	combining them
Quisumbing, 2003). These	systematically to
categories are used to construct a	determine levels of
measure of the loss of welfare	vulnerability (Deressa <i>et</i>
attributed to disasters (Deressa,	al., 2008)
Hassan, & Ringler, 2008)	
The method is easy to estimate; the	This method is valuable
calculation of VEP can be used to	for monitoring trends
dentify non-poverty at-risk	and exploring conceptual
nouseholds, the VEU calculation	frameworks (Deressa <i>et</i>
provides a breakdown of	al., 2008). Integrates
vulnerability to poverty and	and summarizes
vulnerability to uninsured risk, and	different dimensions of a
inally, the calculation of VER can	topic, is easy to
ndicate whether covariates or	interpret, and facilitates
diosyncratic risk are the main cause	the evaluation of policy
of welfare losses (Hoddinott &	effectiveness and
Quisumbing, 2003)	accountability by
	The method is divided into three categories: vulnerability as expected coverty (VEP), vulnerability as a low expected utility (VEU), and vulnerability as uninsured exposure or risk (VER) (Hoddinott & Quisumbing, 2003). These categories are used to construct a measure of the loss of welfare attributed to disasters (Deressa, dassan, & Ringler, 2008). The method is easy to estimate; the calculation of VEP can be used to dentify non-poverty at-risk nouseholds, the VEU calculation of vulnerability to poverty and vulnerability to uninsured risk, and inally, the calculation of VER can indicate whether covariates or diosyncratic risk are the main cause of welfare losses (Hoddinott &

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

		Indicator-based
Concept	Econometric method	methods
		government
		representatives
		(Schuschny & Soto,
		2009)
	If estimates are made using a single	This leads to a lack of
	cross-section, it assumes that cross-	connection between the
	sectional variability is a proxy of	conceptual definition of
	temporal variability (Hoddinott &	vulnerability and the
	Quisumbing, 2003), and it is also	metrics (Deressa et al.,
	difficult to explain an individual's	2008)
Disadvantages	type of risk since individuals are not	
	well informed about them (Kanbur,	
	1987); and in the absence of	
	datasets, impact estimates are often	
	partial and, therefore, are not	
	conclusive indicators (Deressa et al.,	
	2008)	

Source: Developed by the authors.

Similar to drought exposure, methods based on socioeconomic and environmental indicators are the most commonly used methods to evaluate vulnerability; these indicators combine to produce composite indices representing the different degrees of vulnerability (Hagenlocher *et*

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

al., 2019). This approach makes it possible to understand this variable's different facets better and to guide actions aimed at reducing it by implementing drought prevention and mitigation measures.

Mathematical models

Given that vulnerability manifests itself at specific times and places (Adger, 2006), there are different mathematical models to calculate it. The models presented in this section share similarities; for instance, both Webb and Harinarayan (1999, and the IPCC (IPCC, 2001; IPCC, 2014) models identify adaptive capacity as an essential element mitigating hazard's impact; Fontaine and Steinemann (2009) model, modified the IPCC (2001) model, where exposure and sensitivity are added together and then divided by adaptive capacity; ; Luers, Lobell, Sklar, Addams and Matson (2003) measures vulnerability as a function of the state of the interest variables to a damage threshold, the sensitivity of the variables to stress factors, and the magnitude and frequency of the stress factors to which the system is exposed; Me-Bar and Valdez (2005) see vulnerability as the threshold level for a disaster; Burg (2008) defines vulnerability as the probability of an acute decrease or chronic deficit of access to food or consumption below a critical value; Ortega-Gaucin *et al.*

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

(2018a and 2018b) developed an overall drought vulnerability index, which includes the economic, social, and environmental vulnerability of the analyzed systems; and Ortega-Gaucin *et al*. (2021) propose to assess the vulnerability of agricultural systems to drought based on indices of sensitivity and adaptive capacity. Table 8 presents the most common mathematical models to calculate vulnerability.

Table 8. Most common mathematical models to calculate vulnerability.

Author	Description	Formula
Webb & Harinarayan (1999)	They used the formula to study the relationship between vulnerability and malnutrition	Where: $H=$ Hazard or threat, $CA=$
IPCC (2001)	Provides an operational definition of vulnerability	V = CA - (S + E) Where: CA = Adaptive capacity, S = Sensitivity, E = exposure
Luers <i>et al.</i> (2003)	It examines the vulnerability of socioecological systems	Where: $V=$ Vulnerability, $SE=$

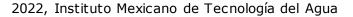
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Author	Description	Formula
Me-Bar and Valdez (2005)	They provided a model used by Zarafshani et al. (2012) to evaluate the vulnerability of wheat producers to drought	parameter value, W is the weight assigned to each parameter. C is derived from $Ci = 1/2$ (W max ki) to
Burg (2008)	Proposes the chronic vulnerability index (CVI) measure levels of vulnerability to food insecurity	V=E+I Where: $E=$ Risk exposure, $I=$
Fontaine and Steinemann (2009)	They developed a conceptual model modifying the IPCC (2001) proposed model to evaluate vulnerability to drought.	$V = \frac{E + S}{CA}$

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Author	Description	Formula
IPCC (2014)	Modifies the operational definition of vulnerability that was defined in 2001	Where: $S=$ Sensitivity, $CA=$ Adaptive capacity
Ortega- Gaucin <i>et</i> <i>al</i> . (2018a and 2018b)	They propose an overall drought vulnerability index, including economic, social, and environmental vulnerability	vulnerability index; <i>IVE</i> = Economic vulnerability index; <i>IVS</i> = Social
Ortega- Gaucin <i>et</i> <i>al.</i> (2021)	They develop an index of vulnerability to agricultural drought assessed based on sensitivity and adaptive capacity indices	Δ

Source: Developed by the authors.

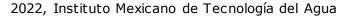

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

The international academic community's most accepted and used of the previous mathematical models is the IPCC (2014); it modifies the operational definition of vulnerability developed by the same organization in 2001, expressing vulnerability as a function of sensitivity and adaptive capacity (leaving out the exposure component, which became part of the risk concept).

Therefore, based on the risk concepts described below, the system's level of drought risk can be determined based on the combination of exposure, vulnerability, and hazard analysis in a specific system.

Risk

The concept of risk, associated with the idea of an uncertain future, has always been present in human societies (Cardona, 2001). This section describes the different risk definitions and the mathematical models used to calculate risk.



Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Risk definitions

The extinct United Nations Disaster Relief Organization (UNDRO, 1979) presents two definitions of risk that are considered the basis of current concepts; the first is a specific risk, and the second is total risk: a) Specific risk-Rs: Degree of expected losses due to the occurrence of a particular event and as a function of hazard and vulnerability; b) *Total risk-Rt*: Number of human losses, injuries, damage to properties, and effects on economic activity due to the occurrence of a disastrous event, in other words, the product of the specific risk (Rs) and the elements at risk (E). For its part, UNISDR (2009) defines risk as to the possible losses a disaster could cause in terms of lives, health conditions, means of livelihood, goods, and services, which could occur in a particular community or society at a specific time in the future. Finally, the IPCC (2014) defines risk as a potential consequence in which something of value is endangered with an uncertain outcome, recognizing the diversity of values. Risk is often represented as the probability of occurrence of hazardous events or trends multiplied by the impact of such events or trends. Risks result from the interaction of vulnerability, exposure, and hazard. The term risk is used mainly about the risks associated with climate change.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Mathematical models to calculate risk

There are different frameworks and equations to evaluate risk; this section explains some model examples: Yen (1971) calculated risk as the probability of an adverse event; UNDRO (1979) determines risk as a function of exposure, hazard, and vulnerability; Cardona (1985), and Schneiderbauer and Ehrlich (2004) took UNDRO (1979) proposed model and modified it, firstly eliminating the exposure variable and secondly by appending the temporal aspect; Cardona (2001) did a holistic assessment of risk by taking into account the socioeconomic fragility and the context's lack of resilience; Davis (2004) incorporates adaptive capacity in his model since capacity development can play a fundamental role in minimizing the scale of disasters; Jordaan (2006) proposed a model to evaluate the risk of agricultural drought considering the hazard's characteristics (probability, severity, and intensity) and three types of vulnerability (economic, social, and environmental); Ortega-Gaucin et al. (2018b) developed a methodology to determine municipal indices of hazard, vulnerability, and risk due to drought, by evaluating the hazard based on historical meteorological records from Mexico's National

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Meteorological Service (SMN) and considering four types of vulnerability (economic, social, environmental, and overall); and Ortega-Gaucin *et al.* (2021) proposed a method to calculate agricultural drought risk by considering its three essential components: hazard, exposure and vulnerability to drought. Table 9 presents the formulas of the mentioned mathematical models.

Table 9. Most common mathematical models are used to calculate risk.

Author	Formula	Description
Yen (1971)	$R = 1 - P(X \le x)^n$	Where: $P(X \le x)$ is the cumulative probability, and n is the number of years, assuming stationary and independent extreme events
UNDRO (1979)	Rt = E x RS = E x(A x V)	Where: Rt = Total risk, E = Exposure, Rs = Specific risk, A = hazard, V = Vulnerability
Cardona (1985)	Rie = f(Ai, Ve)	Where: $Rie = Risk$, $A_i = hazard$, $V_e = Vulnerability$
Schneiderb auer and Ehrlich (2004)	$R_{ahd} = H_{ahd} x E_{ad} x V_{ahd}$	Where: R_{ahd} = Risk, E = Exposure, V = Vulnerability, " h'' = type of hazard, and " a'' = geographical region affected by hazard " h'' , " d'' = a given

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Author	Formula	Description
		day within the period during which the disaster occurs
Cardona (2001)	$R_T = R_F(1+F)$	Where: R_T is the total risk, R_F is the physical risk, and F is a coefficient of aggravation —or impact— that depends on socioeconomic fragility FS , and the context's lack of resilience FR
Davis (2004)	$R = \frac{V \times H}{CA}$	Where: R = Risk, Vulnerability, H = Hazard or threat, CA = Adaptive capacity
Jordaan (2006)	$R = (H \ /C_H) x \left \frac{\sum (V_{econ}V_{env} V_{soc})}{\sum (C_{econ} C_{env} C_{soc})} \right $	Where: $=$ (), with: $=$ Probability of occurrence of a drought of certain magnitude (severity), H_s $=$ Severity of drought H , $=$ (), $=$ Drought intensity and H_d $=$ Duration of Drought H , $=$ 1, V_{econ} $=$ Economic vulnerability, V_{env} $=$ Environmental vulnerability, V_{soc} $=$ Social vulnerability, C_{econ} $=$ Capacity to deal with economic vulnerability, C_{env} $=$ Capacity to deal with environmental

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Author	Formula	Description
		vulnerability and C_{soc} = Capacity to
		deal with social vulnerability
Burg (2008)	Riesgo(R) = V + H	Where: $V=$ Vulnerability and $H=$ Hazard or threat
Ortega- Gaucin <i>et</i> <i>al.</i> (2018b)	$IR = Px \ IVG$	Where: IR is the drought risk index; P is the drought occurrence probability (drought hazard), and IVG is the overall drought vulnerability index (described in Table 8)
Ortega- Gaucin <i>et</i> <i>al.</i> (2021)	$DRI = \frac{DHI + DEI + DVI}{3}$	Where: <i>DRI</i> is the agricultural drought risk index; <i>DHI</i> is the drought hazard index; <i>DEI</i> is the drought exposure index; y <i>DVI</i> is the drought vulnerability index

Source: Developed by the authors.

In general, all the mathematical models described above use the hazard or threat and vulnerability variables as essential components of drought risk, including exposure as an independent variable in some cases. In recent years, the most accepted and used mathematical formula considers risk as a product of hazard (represented by the probability of

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

occurrence of a drought of certain severity), exposure, and vulnerability (measured by socioeconomic and environmental indicators), as can be observed in the studies by Carrao *et al*. (2016), Frischen *et al*. (2020) and Meza *et al*. (2020), among others. This is in line with the concept of risk proposed by the IPCC (2014), which is widely accepted and disseminated in the current scientific community.

Considerations

As we have seen in this study, a wide range of approaches, methods, and tools exist to determine the components of drought risk. The results of an extensive literature review produced in different parts of the world have been summarized here. Systematically reviewing and compiling the different methods can help adapt and improve the assessments' effectiveness. Although there are many methodological approaches and options, the truth is that there are no universally applicable methods to conduct these assessments since the drought phenomenon depends on many contextual factors whose effects are different in each case.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

According to the United Nations Convention to Combat Desertification (UNCCD), the United Nations Food and Agriculture Organization (FAO), the Global Water Partnership (GWP), and the World Meteorological Organization (WMO), in order to improve assessments of vulnerability and drought risk, decision-makers and public policymakers could take into account the following aspects (UNCCD/FAO/GWP/WMO, 2019):

- Adopt a proactive approach to conducting assessments before the drought crisis happens.
- Recognize that drought is often a recurrent phenomenon that interacts with other hazards and can be exacerbated by water and terrestrial resource management patterns.
- Use available assessment methods to promote inclusive, cross-sectoral, and multi-scale vulnerability and risk assessment approaches at the community and watershed levels.
- To learn by trial and error and to review based on the experiences of others, which methods are the most adequate to encourage participation in vulnerability assessments of different social groups.
- Analyze where and how scattered data should be collected, analyzed, and protected.
- Document assessment successes and failures, including cases in which drought impacts were more or less severe than anticipated by prevailing climate conditions.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

 Learning from the experiences of others by participating in coordinated international knowledge exchange and advocating for the use of these processes, including review, validation, documentation, and dissemination.

Anticipating the results of an event that has not yet happened can be difficult, but its effects are well known in the various drought-affected regions. In these areas, vulnerability and risk estimations are informal and continuous processes that are part of the popular culture. Integrating and coordinating these informal estimates with formal and well-documented collective assessment processes involving civil society organizations, local and federal governments, and other institutions can create a more extensive shared understanding and provide a promising basis to share and manage risk at all levels.

Conclusions

Reducing drought risk and its direct and indirect impacts have become a global priority, shown by the increasing number of approaches, methods,

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

and assessment tools published over the past decades. Efforts to reduce drought impact should be based on a solid understanding and a reliable characterization of the phenomenon leading to accurate assessments for decision-making and public policy implementation aimed at achieving that goal. Although progress has been made over the past years to develop better methods and tools to characterize individual risk components, much remains to be done in this regard. The present study has shown the great diversity of concepts and methods for this purpose, none of which applies to all circumstances. Each specific context requires determining the most appropriate approach depending on the adopted focus, available information, and purpose of the assessment. With the information provided here, researchers and evaluators have an overview that can be used to carefully examine these points and choose the theoretical framework and method that best fits the context of their study or, failing that, develop or adapt their own conceptual and methodological proposal.

However, regardless of the concepts or mathematical models used to evaluate drought risk and its components, attention to the effects of the phenomenon should be based on a proactive approach to risk management, the continuous planning and design of strategies (structural and non-structural measures) to be implemented before the occurrence of drought to prevent and mitigate the level of risk exposure and, consequently, the vulnerability to its impacts.

Acknowledgments

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

This study was carried out with the support of the National Council for Science and Technology (CONACYT), within the framework of the PDCPN-2017/4924 research project of the Programa de Proyectos de Desarrollo Científico para Atender Problemas Nacionales. We appreciate the comments and suggestions of two anonymous reviewers who helped to improve the article.

References

- Adger, W. N. (2006). Vulnerability. *Global Environmental Change*, 16, 268-281. Recovered from https://doi.org/10.1016/j.gloenvcha.2006.02.006
- Adepetu, A. A., & Berthe, A. (2007). Vulnerability of rural Sahelian households to drought: Options for adaptation. A Final Report. Submitted to Assessments of Impacts and Adaptations to Climate Change (AIACC), Proj. No. AF 9. Washington, DC, USA: The International START Secretariat.
- Ahmadalipour, A., Moradkhani, H., Castelletti, A., & Magliocca, N. (2019). Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. *Science of the Total Environment* 662, 672-686. Recovered from https://doi.org/10.1016/j.scitotenv.2019.01.278
- Anderson, M. B. (1994). Vulnerability to disaster and sustainable development: A general framework for assessing vulnerability. In: Munasinghe, M., & Clarke, C. (eds.). Disaster prevention for

sustainable development: Economic and policy issues. A Report from the Yokohama World Conference on Natural Disaster Reduction (pp. 23-27). Washington, DC, USA: World Bank.

sa/4.0/)

- Antwi-Agyei, P., Fraser, E. D., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. *Applied Geography*, 32(2), 324-334. Recovered from https://doi.org/10.1016/j.apgeog.2011.06.010
- Ardabili, S., Mosavi, A., Dehghani, M., & Varkonyi-Koczy, A. R. (2019). *A deep learning and machine learning in hydrological processes climate change and earth systems a systematic review*. Preprints. Recovered from https://doi.org/10.20944/preprints201908.0166.v1
- Barakat, F., & Handoufe, A. (1998). Approche agroclimatique de la sécheresse agricole au Maroc. *Science et changements planétaires / Sécheresse*, 9(3), 201-208.
- Bergaoui, M., & Alouini, A. (2001). Caractérisation de la sécheresse météorologique et hydrologique: cas du Bassin Versant de Siliana en *Tunisie. Science et Changements Planétaires / Sécheresse*, 12(4), 205-213.
- Bergman, K. H., Sabol, P., & Miskus, D. (1988). Experimental indices for monitoring global drought conditions. In: *Proceedings of 13th Annual Climate Diagnostics Workshop*. Cambridge, USA: United States Department of Commerce.

- Bhuiyan, C. (2004). Various drought indices for monitoring drought condition in Aravalli Terrain of India. *Proceedings of the XXth ISPRS* International Conference. Istanbul, Turkey: Society for Photogrammetry Remote Recovered and Sensing. from http://www.isprs.org/proceedings/XXXV/congress/comm7/papers/2 43.pdf
- BID, Banco Interamericano de Desarrollo. (2003). *Programa de información e indicadores de gestión de riesgos*. Manizales, Colombia: Banco Interamericano de Desarrollo.
- Birkmann, J. (2007). Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications. *Environmental Hazards*, 7, 20-31. Recovered from https://doi.org/10.1016/j.envhaz.2007.04.002
- Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (1994). *At risk: Natural hazards, people vulnerability, and disasters.* London, UK, and New York, USA: Routledge Publishers.
- Bohle, H. G., Downing, T. E., & Watts, M. J. (1994).Climate change and social vulnerability. Toward a sociology and geography of food insecurity. *Global Environmental Change*, 4(1), 37-48. Recovered from https://doi.org/10.1016/0959-3780(94)90020-5
- Boken, V. K. (2005). Agricultural drought and its monitoring and prediction: some concepts (vol. 472). New York, USA: Oxford University Press.

- Bouroncle, C., Rodríguez, C., Florián, M., Naswa, P., Lærke, S., & Olhoff, A. (2016). Sistema Nacional de Indicadores de Adaptación al Cambio Climático (SIACC): definición del conjunto de indicadores. Bogotá: Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).
- Bootsma, A., Boisvert, J., & Baier, R. (1996). La sécheresse et l'agriculture canadienne: une revue des moyens d'action. *Science et changements planétaires / Sécheresse*, 7(4), 277-285.
- Brooks, N. (2003). Vulnerability, risk and adaptation: A conceptual framework. *Tyndall Centre for Climate Change Research Working Paper*, 38(38), 1-16. Recovered from https://www.researchgate.net/publication/200032746_Vulnerability _Risk_and_Adaptation_A_Conceptual_Framework
- Burg, J. (2008). Measuring populations' vulnerabilities for famine and food security interventions: The case of Ethiopia's chronic vulnerability index. *Disasters*, 32(4), 609-630. Recovered from https://doi.org/10.1111/j.1467-7717.2008.01057.x
- Burton, I., Kates, R. W., & White, G. F. (1978). *The environment as hazard*. New York, USA: Oxford University Press.
- Byun, H. R., & Wilhite, D. A. (1999). Objective quantification of drought severity and duration. *Journal of Climate*, 12(9), 2747-2756.

 Recovered from https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
- Cardona, O. (2005). *Indicadores de riesgo de desastre y de gestión de riesgos*. *Informe resumido*. *BID/IDEA programa de indicadores para*

la gestión del riesgo de desastres. Washington, DC, USA: Banco Interamericano de Desarrollo. Recovered from https://www.cepal.org/ilpes/noticias/paginas/0/35060/INDICADOR ES_DE_RIESGO_DE_DESASTRES_BID.pdf

- Cardona, O. (2001). Estimación holística del riesgo sísmico utilizando sistemas dinámicos complejos (tesis doctoral). Barcelona. España: Universitat Politècnica de Catalunya. Recovered from https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.50 0.11762/19751/HolisticaRiesgoSismicoBogota(Cardona_2001).pdf? sequence=1
- Cardona, O. (1993). Evaluación de la amenaza la vulnerabilidad y el riesgo. Elementos para el ordenamiento y la planeación del desarrollo. En: Maskrey, A. (comp.). *Los desastres no son naturales* (pp. 51-74). Ciudad de Panamá, Panamá: La Red.
- Cardona, O. D. (1985). *Hazard, vulnerability and risk assessment*. Unedited working paper. Skopje, Yugoslavia: Institute of Earthquake Engineering and Engineering Seismology.
- Carrao, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108-124. Recovered from https://doi.org/10.1016/j.gloenvcha.2016.04.012
- Carter, M. R., Little, P. D., Mogues, T., & Negatu, W. (2007). Poverty traps and natural disasters in Ethiopia and Honduras. *World Development*,

- 35(5), 835-856. Recovered from https://doi.org/10.1016/j.worlddev.2006.09.010
- Chambers, R. (1989). Editorial introduction: Vulnerability, coping and policy. *Institute of Development Study IDS Bulletin*, 20(2), 1-7. Recovered from https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.124 13/9551/IDSB_20_2_10.1111-j.1759-5436.1989.mp20002001.x.pdf?sequence=1
- Chandrasekar, K., Sai, M. S., Roy, P., Jayaraman, V., & Krishnamoorthy, R. (2009). Identification of agricultural drought vulnerable areas of Tamil Nadu, India using GIS-based multi criteria analysis. *Asian Journal of Environment and Disaster Management*, 1(1), 40-61. Recovered from https://doi.org/10.3850/S17939240200900009X
- Cheng, J., & Tao, J. P. (2010). Fuzzy comprehensive evaluation of drought vulnerability based on the analytic hierarchy process: An empirical study from Xiaogan city in Hubei province. *Agriculture and Agricultural Science Procedia*, 1, 126-135. Recovered from https://doi.org/10.1016/j.aaspro.2010.09.015
- Cole, S., Gine, X., Tobacman, J., Topalova, P., Townsend, R., & Vickery, J. (2013). Barriers to household risk management: Evidence from India. *American Economic Journal: Applied Economics*, 5(1), 104-135. Recovered from https://doi.org/10.1257/app.5.1.104
- Correia, F. N., Santos, M. A., & Rodrigues, R. R. (1991). Reliability in regional drought studies. In: Ganoulis J. (ed.). *Water resources*

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

- engineering risk assessment (pp. 43-62). Vol. G 29. Berlin, Germany: NATO ASI Series.
- Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. *Social Sciences Quarterly*, 84(2), 243-261. Recovered from https://doi.org/10.1111/1540-6237.8402002
- Davis, I. (2004). Progress in analysis of social vulnerability and capacity.

 In: Bankoff, G., Frerks, G., & Hilhorst, D. (eds.). *Mapping vulnerability: Disasters, development and people*. London, UK: Earth Scan.
- Deems, H. J. (2010). Vulnerability of rural communities in the Mediterranean region to climate change and water scarcity: The case of Cyprus (Master thesis). Barcelona, España: Universitat de Barcelona. Recovered from https://www.cyi.ac.cy/images/projects/eewrc/clico/Deems_Rural_V ulnerability Cyprus thesis Sep2010.pdf
- Deo, R. C. & Şahin, M. (2015). Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. *Atmospheric Research*, 153, 512-525. Recovered from http://dx.doi.org/10.1016/j.atmosres.2014.10.016
- Deressa, T., Hassan, R. M., & Ringler, C. (2008). *Measuring Ethiopian farmers' vulnerability to climate change across regional states. Food Policy*, Serie 806. Washington, DC, USA: International Food Policy Research Institute. Recovered from http://www.ifpri.org/publication/measuring-ethiopian-farmers-vulnerability-climate-change-across-regional-states

- Dercon, S. (2004). Growth and shocks: Evidence from rural Ethiopia. *Journal of Development Economics*, 74(2), 309-329. Recovered from Recovered from https://doi.org/10.1016/j.jdeveco.2004.01.001
- De-Stefano, L., González, I., Ballesteros, M., Urquijo, J., & Blauhut, V. (2015). *Methodological approach considering different factors influencing vulnerability pan-European scale*. Drought-R&SPI Technical Rep. No. 26. Recovered from https://www.researchgate.net/publication/274536771_METHODOL OGICAL_APPROACH_CONSIDERING_DIFFERENT_FACTORS_INFLUE NCING_VULNERABILITY_-_PAN-EUROPEAN_SCALE
- Downing, T. E. (1991). Assessing socioeconomic vulnerability to famine:

 Frameworks, concepts, and applications. Final Report to the US

 Agency for International Development, Famine Early Warning

 System Project. Recovered from

 https://pdf.usaid.gov/pdf_docs/pnabj875.pdf
- Downing, T. E., & Bakker, K. (2000). Drought discourse and vulnerability.
 In: Wilhite, D. A. (ed.). *Drought: A global assessment.* Natural Hazards and Disasters Series. London, USA: Routledge Publishers.
- Dracup, J. A., Lee, K. S., & Paulson, J. R. (1980). On the statistical characteristics of drought events. *Water Resources Research*, 16(2), 289-296.
- Elbers, C., Gunning, J. W., & Kinsey, B. (2007). Growth and risk: Methodology and micro evidence. *The World Bank Economic Review*, 21(1), 1-20. Recovered from https://doi.org/10.1093/wber/lhl008

- Feng, P., Wang, B., Liu, D. L., & Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. *Agricultural Systems*, 173, 303-316. Recovered from https://doi.org/10.1016/j.agsy.2019.03.015
- Flörke, M., Wimmer, F., & Laaser, C. (2011). Final Report for the Project Climate Adaptation modelling waterscenarios and sectoral impacts. Contract N° DG ENV.D.2/SER/2009/0034. Center for Environmental Systems Research, Kassel. Recovered from https://op.europa.eu/en/publication-detail/-/publication/ff6cb987-cdeb-483c-b569-b657111f504a/language-en
- Fontaine, M., & Steinemann, A. C. (2009). Assessing vulnerability to natural hazards: An impact-based method and application to drought in Washington State. *Natural Hazards Review*, 10(1), 11-18. Recovered from https://cig.uw.edu/publications/assessing-vulnerability-to-natural-hazards-an-impact-based-method-and-application-to-drought-in-washington-state/
- Frischen, J., Meza, I., Rupp, D., Wietler, K., & Hagenlocher, M. (2020). Drought risk to agricultural systems in Zimbabwe: A spatial analysis of hazard, exposure, and vulnerability. *Sustainability*, 12(3), 752. Recovered from https://doi.org/10.3390/su12030752
- Füssel, H.-M. (2005). *Vulnerability in climate change research: A Comprehensive conceptual framework*. Recovered from https://escholarship.org/content/qt8993z6nm/qt8993z6nm.pdf

- Füssel, H.-M. (2004). Coevolution of the political and conceptual frameworks for climate change vulnerability assessments. In: Proceedings of the 2002 Berlin Conference on the Human Dimensions of Global Environmental Change Knowledge for the Sustainability Transition. The Challenge for Social Science (pp. 302-320). Amsterdam, Berlin, Potsdam and Oldenburg: Global Governance Project.
- Gibbs, W. J., Maher, J. V., & John, V. (1967). Rainfall deciles as drought indicators. In: *Bulletin (Commonwealth Bureau of Meteorology (Australia))*. No. 48 (p. 84). Melbourne, Australia: Bureau of Meteorology.
- González, T. I., Urquijo, J., Blauhut, V., Villarroya, F., & De-Stefano, L. (2016). Learning from experience: A systematic review of assessments of vulnerability to drought. *Natural Hazards*, 80(2), 951-973. Recovered from https://doi.org/10.1007/s11069-015-2006-1
- Gusyev, M. A., Hasegawa, A., Magome, J., Kuribayashi, D. H., & Lee, S. (2015). Drought Assessment in the Pampanga River Basin, the Philippines. Part 1: A Role of Dam Infrastructure in Historical Droughts. *Proceedings of the 21st International Congress on Modelling and Simulation (MODSIM 2015)*. Broadbeach, Queensland, Australia. DOI: 10.13140/RG.2.1.4931.4321
- Guo, Y., Huang, S., Huang, Q., Wang, H., Wang, L., & Fang, W. (2019). Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. *Journal of Hydrology*, 575,

2022, Instituto Mexicano de Tecnología del Agua Open Access bajo la licencia CC BY-NC-SA 4.0

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

1052-1064. Recovered from https://doi.org/10.1016/j.jhydrol.2019.06.010

- Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., & Sebesvari, Z. (2019). Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. *Environmental Research Letters*, 14(8), 083002. Recovered from https://iopscience.iop.org/article/10.1088/1748-9326/ab225d/meta
- Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln Declaration on Drought Indices: universal meteorological drought index recommended. *Bulletin of the American Meteorological Society*, 92(4), 485–488.
- Heim, Jr., R. R. (2002). A Review of twentieth-century drought indices used in the United States. *Bulletin of the American Meteorological Society*, 83(8), 1149-1166. Recovered from https://journals.ametsoc.org/view/journals/bams/83/8/1520-0477-83 8 1149.xml
- Hoddinott, J., & Quisumbing, A. (2003). Methods for microeconometric risk and vulnerability assessment. In: *Risk, shocks, and human development* (pp. 62-100). London, UK: Palgrave Macmillan. Recovered from https://doi.org/10.1057/9780230274129 4
- Iglesias, A., Moneo, M., & Quiroga, S. (2007). Methods for evaluating social vulnerability to drought (Part 1. Components of drought planning. 1.3. Methodological component). In: Iglesias, A., Moneo, M., & López-Francos, A. (eds.). *Drought management guidelines technical annex. Zaragoza: CIHEAM / EC MEDA Water, 129-133*.

- (Options Méditerranéennes: Série B. Etudes et Recherches; n. 58). Recovered from http://om.ciheam.org/om/pdf/b58/00800538.pdf
- IPCC, Grupo Intergubernamental de Expertos sobre el Cambio Climático.

 (2014). Cambio climático 2014. Impactos, adaptación y vulnerabilidad Resumen para responsables de políticas. Contribución del Grupo de Trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre El Cambio Climático.

 Recovered from https://www.ipcc.ch/site/assets/uploads/2018/03/ar5_wgII_spm_e s-1.pdf
- IPCC, Intergovernmental Panel on Climate Change. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Field, C., Barros, V., Stocker, T., & Dahe, Q. (eds.). Cambridge University Press. Recovered from https://archive.ipcc.ch/pdf/special-reports/srex/SREX Full Report.pdf
- IPCC, Intergovernmental Panel on Climate Change. Climate Change. (2001). *The Scientific Basis*. Cambridge, UK; New York, USA: Cambridge University Press. Recovered from http://webpages.icav.up.pt/PTDC/CVT/098487/2008/IPPC,%20200 1.pdf
- Jordaan, A. J. (2006). Disaster risk assessment: Thumb sucking or scientific risk quantification? Paper presented at Annual Congress:

 Disaster Management Institute of southern Africa (DMISA).

 Hartenbosch, South Africa.

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

- Kaly, U., & Pratt, C. (2000). Environmental vulnerability index: Development and provisional indices and profiles for Fiji, Samoa, Tuvalu and Vanuatu. Phase II report for NZODA. SOPAC Technical Report 306. Suva, Fiji: SOPAC.
- Kanbur, R. (1987). The standard of living: Uncertainty, inequality and opportunity. In: Hawtorn, G. (ed.). *The standard of living*. New York, USA: Cambridge University Press.
- Kates, R. W. (1985). The interaction of climate and society. In: Kates, R. W., Ausubel, J. H., & Berbarian, M. (eds.). *Climate impacts assessment* (pp. 3-36). *Chichester*, UK: John Wiley. Recovered from http://www.rwkates.org/pdfs/a1985.01.pdf
- Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. *International Journal of Remote Sensing*, 11(8), 1405-1419. Recovered from https://doi.org/10.1080/01431169008955102
- Kogan, F. N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar orbiting satellite data. *Bulletin of the American Meteorology Society*, 76(5), 655-668. Recovered from https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
- Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). Method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267. Recovered from https://yaquivalley.stanford.edu/pdf/luers_GEC_2003.pdf

- Magaña, V. (2013). *Guía metodológica para la evaluación de la vulnerabilidad ante cambio climático*. México, DF, México: Instituto Nacional de Ecología y Programa de las Naciones Unidas para el Desarrollo.
- Marcos, O. (2001). Sequía: definiciones, tipología y métodos de cuantificación. *Investigaciones Geográficas*, 26, 59-80. Recovered from http://rua.ua.es/dspace/handle/10045/363
- Me-Bar, Y., & Valdez, F, Jr. (2005). On the vulnerability of the ancient Maya society to natural threats. *Journal of Archaeological Science*, 32, 813-825. Recovered from https://doi.org/10.1016/j.jas.2004.11.015
- Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi-Rezaei, E., Nouri, H., Gerdener, H., Popat, E., Frischen, J., Naumann, G., Vogt, J. V., Walz, Y., Sebesvari, Z., & Hagenlocher, M. (2020). Global-scale drought risk assessment for agricultural systems. *Natural Hazards and Earth System Sciences*, 20(2), 695-712. Recovered from https://doi.org/10.5194/nhess-20-695-2020
- Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. AMS 8th Conference on Applied Climatology, 17(22), 179-184. Recovered from https://doi.org/citeulike-article-id:10490403
- Mishra, A., & Singh, V. P. (2010). A review of drought concepts. *Journal of Hydrology*, 391(1-2), 202-216. Recovered from https://doi.org/10.1016/j.jhydrol.2010.07.012

2022, Instituto Mexicano de Tecnología del Agua

Open Access bajo la licencia CC BY-NC-SA 4.0

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

- Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21(3), 223-233.
- Nalbantis, I., & Tsakiris, G. (2008). Assessment of hydrological drought revisited. *Water Resources Management*, 23(5), 881-897.
- Naumann, G., Barbosa, P., Garrote, L., Iglesias, A., & Vogt, J. (2013). Exploring drought vulnerability in Africa: An indicator-based analysis to inform early warning systems. *Hydrology and Earth System Sciences Discussions*, 10(10), 12217-12254. DOI: 10.5194/hess-18-1591-2014
- Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. *Agricultural and Forest Meteorology*, 133(1), 69-88. Recovered from https://doi.org/10.1016/j.agrformet.2005.07.012
- NDMC, National Drought Mitigation Center. (1995). *Understanding the drought phenomenon: The role of definitions*. Lincoln, USA: National Drought Mitigation Center.
- OMM & GWP, Organización Meteorológica Mundial y Asociación Mundial para el Agua. (2006). *Vigilancia y alerta temprana de la sequía: conceptos, progresos y desafíos futuros.* Ginebra, Suiza. Organización Meteorológica Mundial y Asociación Mundial para el Agua. Recovered from https://www.droughtmanagement.info/literature/WMO_drought_m onitoring_early_warning_es_2006.pdf

- OMM & GWP, Organización Meteorológica Mundial y Asociación Mundial para el Agua. (2016). *Manual de indicadores e índices de sequía.*Programa de Gestión Integrada de Sequías. Recovered from http://www.droughtmanagement.info/literature/WMO-GWP_Manual-de-indicadores_2016
- Ortega-Gaucin, D. (2012a). *Drought in Nuevo León: Vulnerability, impacts, and mitigation strategies.* Monterrey, México: Instituto del Agua del Estado de Nuevo León. Recovered from https://agua.org.mx/biblioteca/sequia-en-nuevo-leon-vulnerabilidad-impactos-y-estrategias-de-mitigacion/
- Ortega-Gaucin, D. (2012b). *Impacto socio-económico de la sequía en un distrito de riego: estrategias para mitigarlo*. Saarbrücken, Alemania: Editorial Académica Española.
- Ortega-Gaucin, D., Ceballos-Tavares, J. A., Ordoñez, A., & Castellano-Bahena, H. V. (2021). Agricultural drought risk assessment: A spatial analysis of hazard, exposure, and vulnerability in Zacatecas, Mexico. *Water*, 13(10), 1431. Recovered from https://doi.org/10.3390/w13101431
- Ortega-Gaucin, D., De-la-Cruz-Bartolón, J., & Castellano-Bahena, H. V. (2018a). Drought Vulnerability Indices in Mexico. *Water*, 10 (11), 1671. MDPI AG. Recovered from https://doi.org/10.3390/w10111671
- Ortega-Gaucin, D., De-la-Cruz-Bartolón, J., & Castellano-Bahena, H. V. (2018b). Hazard, vulnerability, and risk due to drought in the context of climate change in Mexico. In: *Water and climate change* (pp. 80-

105). Jiutepec, México: Instituto Mexicano de Tecnología del Agua.

Recovered from http://repositorio.imta.mx/handle/20.500.12013/2192

sa/4.0/)

- Ortega-Gaucin, D., López, M., & Arreguín, F. I. (2016). Drought risk management in Mexico: Progress and challenges. *International Journal of Safety and Security Engineering*, 6(2), 161-170. Recovered from https://doi.org/10.2495/SAFE-V6-N2-161-170
- Ortega-Gaucin, D., & Velasco, I. (2015). Program of preventive and mitigation measures in the Río Balsas Basin Council, Mexico. In: Andreu, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., & Van-Lanen, H. (eds.). *Drought: Research and science-policy interfacing* (pp. 493-498). The Netherlands: CRC Press/Balkema. Recovered from https://www.researchgate.net/publication/275963665_Program_of _Preventive_and_Mitigation_Drought_Measures_in_the_Rio_Balsa s_Basin_Council_Mexico
- Palmer, W. C. (1968). Keeping track of crop moisture conditions, nationwide: The new crop moisture index. *Weatherwise*, 21(4), 156-161. DOI: 10.1080/00431672.1968.9932814
- Palmer, W. C. (1965). *Meteorological drought*. Weather Bureau Research
 Paper No. 45. Washington, DC, USA: US Department of Commerce.
 Recovered from
 https://www.droughtmanagement.info/literature/USWB_Meteorolog
 ical_Drought_1965.pdf

- Park, S., Im, J., Jang, E., & Rhee, J. (2015). Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. *Agricultural and Forest Meteorology*, 216, 157-169. Recovered from http://dx.doi.org/10.1016/j.agrformet.2015.10.011
- Patrick, E. (2003). Sequía: vulnerabilidad y crisis en las tierras áridas. New York, USA: Programa de las Naciones Unidas para el Desarrollo (PNUD).
- Peduzzi, P., Dao, H., Herold, C., & Mouton, F. (2009). Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. *Natural Hazards and Earth System Sciences*, 9, 1149-1159. Recovered from https://nhess.copernicus.org/articles/9/1149/2009/nhess-9-1149-2009.pdf
- Rhee, J., & Im, J. (2017). Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. *Agricultural and Forest Meteorology*, 237, 105-122. Recovered from https://doi.org/10.1016/j.agrformet.2017.02.011
- Safavi, H. R., Esfahani, M. K., & Zamani, A. R. (2014). Integrated index for assessment of vulnerability to drought, case study: Zayandehrood River Basin, Iran. *Water Resources Management*, 28(6), 1671-1688. Recovered from https://doi.org/10.1007/s11269-014-0576-4
- Shafer, B., & Dezman, L. (1982). Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in

Snowpack Runoff Areas. In: *Proceedings of the Western Snow Conference* (pp. 164-175). Recovered from https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/1982Shafer.pdf

- Sisto, N., Guajardo-Quiroga, R., & Aguilar-Barajas, I. (2011). Estimación de los impactos económicos de una sequía. *Tecnología y Ciencias del Agua*, 2(2), 111-123. Recovered from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222011000200008&lng=es&tlng=es
- Schneiderbauer, S., & Ehrlich, D. (2004). Risk, hazard, and people's vulnerability to natural hazards: A review of definitions, concepts and data. *European Commission Joint Research Centre, EUR*, 21410, 40. Recovered from https://www.researchgate.net/publication/268149143_Risk_Hazard _and_People's_Vulnerability_to_Natural_Hazards_a_Review_of_Definitions_Concepts_and_Data
- Schuschny, A., & Soto, H. (2009). *Guía metodológica, diseño de indicadores compuestos de desarrollo sostenible*. Santiago de Chile, Chile: CEPAL, Naciones Unidas. Recovered from https://www.cepal.org/es/publicaciones/3661-guia-metodologica-diseno-indicadores-compuestos-desarrollo-sostenible
- Tate, E. L., & Gustard, A. (2000). Drought definition: A hydrological perspective. In: Voght J. V., & Somma, F. (eds.). *Drought and drought mitigation in Europe (advances in natural and technological*

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

- *hazard research*). Vol 14. Dordrecht, The Netherlands: Springer. Recovered from https://doi.org/10.1007/978-94-015-9472-1_3
- Tarpley, J. D., Schneider, S. R., & Money, R. L. (1984). Global vegetation indices from the NOAA7 meteorological satellite. *Journal of Climate and Applied Meteorology*, 23(3), 491-494. Recovered from https://doi.org/10.1175/1520-0450(1984)023<0491:GVIFTN>2.0.CO;2
- Tsakiris, G. (2007). Practical application of risk and hazard concepts in proactive planning. *European Water*, 19(20), 47-56. Recovered from https://www.ewra.net/ew/pdf/EW_2007_19-20_05.pdf
- Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., & Batelaan, O. (2013). A System-based paradigm of drought analysis for operational management. *Water Resources Management*, 27(15), 5281-5297. Recovered from https://doi.org/10.1007/s11269-013-0471-4
- Timmerman, P. (1981). Vulnerability, resilience, and the collapse of society. In: *Environmental Monograph*, No. 1. Toronto, Canada: Institute for Environmental Studies, University of Toronto.
- UNCCD, FAO, GWP, & WMO, Convención de las Naciones Unidas para el Combate de la Desertificación, Organización de las Naciones Unidas para la Alimentación y la Agricultura, & Asociación Mundial para el Agua y Organización Meteorológica Mundial. (2019). Drought impact and vulnerability assessment: Available approaches and policy recommendations. UNCCD. Recovered from https://www.unccd.int/publications

- UNISDR, Estrategia Internacional para la Reducción de Desastres. (2009).

 En: Terminología sobre reducción del riesgo de desastres, 43.

 Recovered from http://www.unisdr.org/files/7817_UNISDRTerminologySpanish.pdf
- UNDRO, United Nations Disaster Relief Organization. (1979). *Natural disasters and vulnerability analysis*. Report of Experts Group Meeting. Geneva, Switzerland: UN, United Nations Disaster Relief Organization.
- Valiente, M. (2001). Sequía: definiciones, tipologías y métodos de cuantificación. *Investigaciones Geográficas* (*España*), (26), 59-80. Universidad de Alicante Alicante, España. Recovered from https://www.redalyc.org/pdf/176/Resumenes/Resumen_17602604 __1.pdf
- Van-Rooy, M. P. (1965). A rainfall anomaly index (RAI) independent of time and space. *Notos*, 14, 43-48.
- Velasco, I. (2002). *Plan de preparación para afrontar sequías en un distrito de riego* (tesis de Doctorado en Ingeniería Hidráulica). Universidad Nacional Autónoma de México, México.
- Velasco, I., Ochoa, L., & Gutiérrez, C. (2005). Sequía, un problema de perspectiva y gestión. *Región y Sociedad*, 17(34), 35-71. Recovered from
 - http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870 -39252005000300002&Ing=es&tIng=es

- Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. *Journal of Climate*, 23(7), 1696-1718. Recovered from https://doi.org/10.1175/2009JCLI2909.1
- Wanders, N., Van-Lanen, H. A. J., & Van-Loon, A. F. (2010). *WATCH Technical Report No. 24: Indicators for drought characterization on a global scale*. Recovered from https://library.wur.nl/WebQuery/wurpubs/fulltext/160049
- Webb, P., & Harinarayan, A. (1999). A measure of uncertainty: The nature of vulnerability and its relationship to malnutrition. *Disasters*, 23(4), 292-305.
- Welle, T., & Birkmann, J. (2015). The World Risk Index An Approach to assess risk and vulnerability on a global scale. *Journal of Extreme Events*, 2(1), 1550003. Recovered from https://doi.org/10.1142/S2345737615500037
- Wilhite, D. A. (ed.). (2005). *Drought and water crises: Science, technology, and management issues*. Boca Raton, USA: Taylor & Francis, CRC Press.
- Wilhite, D. A. (2000). Chapter 1 Drought as a natural hazard: Concepts and definitions. In: Wilhite, D. (ed.). *Drought: A global assessment,* Vol. I. (pp. 3-18). London, England: Routledge. Recovered from http://digitalcommons.unl.edu/droughtfacpub/69

- Wilhite, D. A., & Glantz, M. H. (1985). *Understanding the drought* phenomenon: The role of definitions. Recovered from http://digitalcommons.unl.edu/droughtfacpub/20
- Winsemius, C., Jongman, B., Veldkamp, I. E., Hallegatte, S., Bangalore, M., & Ward, P. J. (2018). Disaster risk, climate change, and poverty: Assessing the global exposure of poor people to floods and droughts. *Environment and Development Economics*, 23(3), 328-348. Recovered from https://doi.org/10.1017/S1355770X17000444
- Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2003). *At risk: Natural hazards, people's vulnerability and disasters* (2nd ed.). Recovered from https://www.preventionweb.net/files/670 72351.pdf
- Wood, N. (2011). Understanding risk and resilience to natural hazards. Vancouver, USA: U.S. Geological Survey Fact Sheet. Recovered from http://pubs.usgs.gov/fs/2011/3008/
- Yen, B. C. (1971). Risks in hydrologic design of engineering projects, *Journal of the Hydraulics Division*, 97(9), 1525-1526. Recovered from https://doi.org/10.1061/JYCEAJ.0002476
- Zhang, R., Chen, Z. Y., Xu, L. J., & Ou, C. Q. (2019). Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China. *Science of the Total Environment*, 665, 338-346. Recovered from https://doi.org/10.1016/j.scitotenv.2019.01.431
- Zarafshani, K., Sharafi, L., Azadi, H., Hosseininia, G., De-Maeyer, P., & Witlox, F. (2012). Drought vulnerability assessment: The case of

Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Wheat farmers in Western Iran. *Global and Planetary Change*, 98-99, 122-130. Recovered from

https://doi.org/10.1016/j.gloplacha.2012.08.012