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Abstract 

The poor understanding of the hydrological functioning of many dryland 

catchments challenges hydrological modeling on both a discrete and a 

continuous basis. This paper implements a simple yet robust conceptual 

rainfall-runoff model, GR2M, to predict long-term monthly runoff in the 

Sauce Grande catchment (Argentina). It aims at determining whether (i) 

simple rainfall-runoff models perform satisfactorily on dryland 

catchments, and (ii) the parameter transfer from calibration to validation 
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works in the context of climate-driven flow variability. Two model versions 

are evaluated and compared considering similar and contrasting 

catchment conditions along the period of record. Calibration results 

showed from 88 to 90 % efficiency on runoff predictions (on average), 

with variations along calibration periods linked to prevailing flow 

conditions (magnitude, variability, and constancy). From both, the model 

version separating the part of direct runoff from subsurface flow showed 

greater sensitivity to extreme flow conditions and greater structure 

adaptability to the full range of flows. Efficiency losses from calibration to 

validation were yet marked (22 %, on average), and responded primarily 

to runoff overestimations on periods of low flow. Parameters were allowed 

to evolve along with hydroclimatic conditions based on decision tree 

learning. Through this modification, the predictive efficiency of GR2M 

improved by 97 %. In addition to validating the robustness of simple 

rainfall-runoff models on drylands once parameters may evolve, this 

paper yields new hydrological data that constitutes an important platform 

to underpin further water resources planning and management in this 

highly regulated catchment. 

Keywords: Hydrological modeling, dryland catchments, hydroclimatic 

variability, GR2M, Sauce Grande River. 

 

Resumen 

La escasa comprensión sobre el funcionamiento hidrológico de muchas 

cuencas de zonas secas desafía el modelado hidrológico en forma discreta 

y continua. Este trabajo implementa un modelo conceptual simple, pero 
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robusto (GR2M) para predecir la escorrentía mensual en la cuenca del río 

Sauce Grande (Argentina). El mismo pretende determinar a) la eficacia 

de modelos conceptuales simples en cuencas de zonas secas, y b) el 

potencial de transferencia de los parámetros del modelo en el contexto 

de la variabilidad hidroclimática característica de estos ambientes. Se 

evalúan y comparan dos versiones de GR2M considerando condiciones 

similares y contrastantes a lo largo del periodo de registro. La eficacia de 

los modelos durante calibración fue de entre 88 y 90 % en promedio, con 

variaciones vinculadas con cambios en las condiciones de escorrentía 

predominantes (magnitud, variabilidad y constancia). La versión del 

modelo que separa la escorrentía directa del flujo subsuperficial demostró 

mayor sensibilidad a condiciones extremas y mayor adaptabilidad 

estructural a la gama completa de flujos. Sin embargo, se registraron 

notorias pérdidas de eficacia entre calibración y validación (22 %, en 

promedio) debidas principalmente a sobreestimaciones en periodos de 

baja escorrentía. Los parámetros del modelo se ajustaron a la variabilidad 

hidroclimática sobre la base de árboles de regresión. Así, la eficacia 

predictiva de GR2M mejoró en un 97 %. Además de validar la solidez de 

modelos hidrológicos simples en zonas secas permitiendo a los 

parámetros evolucionar con el tiempo, este trabajo provee datos 

hidrológicos de base para la planificación y gestión de los recursos hídricos 

en esta cuenca altamente regulada. 

Palabras clave: modelación hidrológica, cuencas de zonas secas, 

variabilidad hidroclimática, GR2M, río Sauce Grande. 
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Introduction 

 

 

Hydrological modeling is prime for water resources planning and 

management in the context of climate variability and change. Most of the 

currently available models will provide reliable results where hydrological 

data are available for calibration of model parameters (Boughton & Chiew, 

2007). However, the distinct hydrology of dryland rivers (i.e., drought- 

and flood-dominated regimes with extreme variability and low 

predictability (Bunn, Thoms, Hamilton, & Capon, 2006) challenges 

hydrological modeling on both a discrete and a continuous basis (Pilgrim, 

Chapman, & Doran, 1988).  

Hydrological modeling in drylands has two major sources of error. 

On the one hand, model parameters at calibration represent standard 

catchment conditions in response to seasonal climatic variations that are 

assumed as stable on both validation and prediction (Coron et al., 2012; 

Merz, Parajka, & Blöschl, 2011). Climate-driven flow variability may lead 

to less optimal results because parameters calibrated on a given period 

do not necessarily represent the full range of flows that may be expected 
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to occur in the long term. On the other hand, the over-parameterization 

of many models (which constitutes one of the root causes of the model 

output uncertainty; Perrin, Michel, & Andréassian, 2001) may be 

particularly challenging in drylands. Dryland catchments home some of 

the most poorly gauged rivers on Earth (Callow & Boggs, 2013), and 

therefore lack a detailed hydrological understanding on which to base the 

calibration of many model parameters – especially those related to 

subsurface flow processes (Beven, 2002). 

This paper implements a simple yet robust conceptual hydrological 

model, GR2M (Makhlouf & Michel, 1994), to determine whether a) 

conceptual models based on few parameters perform satisfactorily on 

dryland catchments, and b) a simple transfer of model parameters from 

calibration to validation works in the context of climate-driven flow 

variability. The study compares two different model versions (Lavabre, 

Cambon, Folton, Makhlouf, & Michel, 1997; Mouelhi, Michel, Perrin, & 

Andréassian, 2006) to determine the parameters that are most sensitive 

to dryland catchment hydrology and implements generalized split-sample 

tests (Coron et al., 2012) allowing considering all possible climatic 

configurations between calibration and validation. The analysis centers on 

the Sauce Grande catchment, the major source of freshwater within 

south-western Buenos Aires, Argentina. This dry subhumid catchment has 

been regulated 40 years ago for drinking water supply, and present 

reservoir performance revisits particular attention. In addition to 

providing a new example validating the robustness of GR2M to simulate 

monthly runoff, this paper improves the potential for transferability of 

model parameters over time and yields new hydrological data that 
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constitutes an important platform to underpin further water resources 

planning and management in this highly regulated, dryland catchment. 

 

 

Materials and methods 

 

 

Study area 

 

 

The study centers on the Sauce Grande River (Argentina), an agricultural 

stream regulated since 1978 by the Paso de las Piedras dam for drinking 

water supply to the cities of Bahía Blanca and Punta Alta (Figure 1). The 

climate type for the majority of the river catchment is dry subhumid. Mean 

annual rainfall is 640 mm, mean annual temperature is 14.3 °C, and mean 

potential evapotranspiration is 1 050 mm (1981-2010); based on the data 

series described by Casado, 2013). The river flow regime is perennial 

flashy (rainfed) and event driven (Casado, 2013). According to the 

hydrological series used in this study (1910-1947), the mean annual flow 

is 3.44 m3 s-1 and exhibits high variation (CV = 1.3). Flow variability is the 

norm, as it occurs in most dryland rivers (Tooth, 2000; Tooth, 2013), and 

responds to rainfall anomalies linked primarily to El Niño-Southern 



 

 

 

2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

260 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(5), 254-303. DOI: 10.24850/j-tyca-2021-05-06 

Oscillation (Scian, 2000) and other large-scale atmospheric phenomena 

(Scian, Labraga, Reimers, & Frumento, 2006). 

 

 

Figure 1. Map of the study catchment showing major topographic 

features. 

 

Long-standing episodes of drier- and wetter-than-normal conditions 

are common (Casado & Campo, 2019), and impact very seriously on local 

water resources. At present, the recurrence of drought and increasing 

water demand challenge the relationship between water use and 
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management, and the current reservoir performance revisits particular 

attention. However, one of the major drawbacks to re-evaluating the 

relationship between capacity, yield, and performance of Paso de las 

Piedras is that the drainage basin to the reservoir is poorly gauged, and 

long-term records on which to base realistic projections are therefore 

lacking. 

Predicting long-term runoff series in this regulated, poorly gauged 

catchment is both important and challenging. Previous research efforts on 

hydrological modeling within the upper Sauce Grande catchment provided 

suitable results (Brandizi, Sequeira, & Fernández, 2013). However, the 

data series used on model calibration was too short in the context of the 

regional climate variability, and further research efforts should focus on 

producing reliable runoff predictions under non-stationary climate 

conditions supporting near future water planning and management. 

 

 

Data 

 

 

Hydrological records in the study catchment are either short-termed, 

temporally discontinuous, or both. The only reliable hydrological series 

available in the long term are monthly runoff volumes recorded at La 

Toma (Figure 1) on the period 1910-1947. Despite these runoff records 

probably mislead current hydrologic conditions, the series encompasses 
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some of the most severe flood and drought events in history, e.g., the 

drought of 1935-1939 (Schefer, 2004); the floods of 1919 and 1944 (Gil, 

2010). It, therefore, provides a good dataset on which to calibrate the 

models. In addition, these data series were used to size the Paso de las 

Piedras dam prior to construction (Schefer, 2004), and have therefore a 

great value-added.  

Concurrent rainfall records were obtained from different rail stations 

and farms through the catchment. Mean areal rainfall was calculated 

using the Thiessen method. Months exhibiting missing records or 

unreliable values were completed with gridded rainfall data extracted 

from the global dataset of the University of Delaware (Willmott & 

Matsuura, 2001). The potential evapotranspiration (PE) was calculated 

based on mean monthly gridded temperatures (Willmott & Matsuura, 

2001) using the method of Thornthwaite (1948). This method was 

selected because of its simplicity for PE estimations (i.e., it only requires 

to mean monthly temperature as input). In addition, it still remains 

among the top ten PE formulae for rainfall-runoff modeling as 

demonstrated by Oudin et al. (2005). Monthly series of runoff, mean areal 

rainfall and potential evapotranspiration were pooled together to provide 

a continuous dataset over 30 years of record (1916-1945).  

 

 

Methods 
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Rainfall-Runoff models 

 

 

Among the wide range of conceptual hydrological models available in the 

literature, this study implements the GR2M model (Génie Rural à 2 

paramètres Mensuel) developed by Makhlouf and Michel (1994). GR2M 

was selected for two main reasons. First, GR2M estimates runoff from 

rainfall using two parameters only, thus avoiding poor estimations of 

physical parameters frequently unknown in poorly gauged catchments. 

Second, GR2M has been implemented successfully for a variety of 

applications and under a range of hydroclimatic conditions, including 

drylands (Djellouli, Bouanani, & Baba-Hamed, 2015; Folton & Lavabre, 

2007; Mebarki, 2010; Okkan & Fistikoglu, 2014). Two versions of GR2M 

were retained and compared for the purpose of this study. Lavabre et al. 

(1997) modified the original GR2M to improve its efficiency for baseflow 

simulation. Later, Mouelhi et al. (2006) proposed a more general version 

of the original GR2M to increase its applicability under varying climate 

conditions.  

The two model versions, namely GR2M-97 and GR2M-06, 

respectively, build on the water balance equation. Both use monthly 

rainfall (P) and evapotranspiration (E) data as input and estimate runoff 

based on recharge-discharge relationships between two reservoirs (Figure 

2). First, the effective rainfall (Pe) is determined from a soil moisture 

reservoir (H). The maximum capacity of H is given by the parameter X1 
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(X1 > 0), and its actual content at the end of a given month is given by 

the balance between rainfall inputs (H1) and evapotranspiration losses 

(H2) for that particular month. Pe is then routed by a second reservoir 

with storage S and a production capacity X4. Actual runoff from the study 

catchment is given by a water balance term that regulates runoff 

production (X5). Depending on the model structure, it controls total runoff 

outputs (GR2M-97) or regulates the content of S (GR2M-06). Values of X5 

greater than 1 indicate additional water supplies than those considered 

by the model, while values lower than 1 indicate additional water losses. 

The closer X5 to 1, the higher the ability of the model to simulate the 

water balance of the catchment. 
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Figure 2. Scheme of the GR2M-97 and GR2M-06 models showing free 

parameters requiring calibration (in green). Equations are given along. 

For a more detailed description of the models, please refer to Lavabre et 

al. (1997), Makhlouf and Michel (1994), and Mouelhi et al. (2006). 

 

The main differences between the two GR2M versions are given as 

follows.  

a) The way initial abstractions are computed. GR2M-97 begins with 

a partial cancellation between P and E input data (U), whereas 

abstractions in GR2M-06 are considered in a percolation equation with 

parameter X2 that takes a fixed value (X2 = 3). 

b) The free parameters governing the model structure. The capacity 

of the soil moisture reservoir X1 is fixed to 250 mm in GR2M-97, whereas 

X1 is no longer a fixed parameter in GR2M-06 and requires calibration. On 

the other hand, GR2M-97 builds on the parameter X3 to determine the 

fraction of Pe that is readily discharged to the stream (Q1), and its 

complementary part entering the routing reservoir to yield Q2 (0 ≤ X3 ≤ 

1). Conversely, there is no direct runoff by-passing the routing reservoir 

in GR2M-06. All the effective rainfall Pe is routed by S, and therefore 

Q1 = 0.  

c) The role of parameters X4 and X5 in the computation of runoff 

outputs. In GR2M-97, X4 controls the part of S that becomes Q2 

(X4 = 1/3), and the water exchange term X5 is used to adjust total runoff 

outputs from the catchment. In GR2M-06, however, X4 is the storage 

capacity of S, and water losses (or gains) to (from) outside the catchment 
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are proportional to the content of S. Total runoff is ultimately determined 

based on the content of S after computation of water exchanges and 

relative to the capacity of S (expressed as a fixed value of 60 mm).  

 

 

Generalized split-sample tests 

 

 

GR2M-97 and GR2M-06 were calibrated using generalized split-sampling 

tests (GSST). In opposition to standard split-sample tests (Klemeš, 

1986), GSST consist of a series of calibration-validation tests considering 

all possible climatic configurations, including similar and contrasting 

conditions between calibration and validation (Coron et al., 2012). The 

GSST procedure involves a) defining calibration periods using a sliding 

window of a given time length; b) optimizing model parameters on each 

calibration period using a given objective function, and c) performing all 

possible validation tests on the remaining periods whether they ensure 

independence (i.e., calibration and validation periods do not overlap). 

This study used a sliding window of 5-yr lengths. The window was 

moved by one hydrological cycle (1 year) from 1916 to 1945, thus 

providing 26 calibration periods with a 4-yr overlap. The year preceding 

each calibration period was used as a warm-up period in all calibrations. 

This ensured avoiding the effects of bad initial conditions on calibration. 
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On each calibration period, model parameters were optimized by 

maximizing the square root transformed Nash-Sutcliffe efficiency (sqrt E). 

This transformation provides a median way between the classical Nash-

Sutcliffe efficiency (Nash & Sutcliffe, 1970), that emphasizes the quality 

of high-flow simulations, and its log-transformed version, which 

emphasizes the quality of low-flow simulations (Perrin et al., 2001; Perrin, 

Michel, & Andréassian, 2003). Accordingly, sqrt E is given by: 

 

sqrt 𝐸 = 1 −
∑ (√𝑂𝑖 −√𝑃𝑖 )

2𝑛
𝑖=1

∑ (√𝑂 𝑖−√𝑂̅̅ ̅̅ )
2

𝑛
𝑖=1

        (1) 

 

where O and P are observed and predicted runoff at time step I; Ō is the 

mean observed runoff over the calibration period, and n is the number of 

time steps.  

This procedure provided one parameter set per calibration period 

(i.e., 26 parameter sets) for both GR2M-97 and GR2M-06 models. Model 

parameters obtained for each calibration period were then tested on all 

the remaining, non-overlapping periods. This ensured strict independence 

in validation. 

 

 

Model efficiency criteria 
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Two additional criteria were selected to determine which of the models 

perform better for runoff simulation in drylands. These include the 

classical Nash-Sutcliffe efficiency E, and an index of agreement d 

proposed by Willmott (1981) and revisited later by Krause, Boyle, and 

Bäse (2005). The index of agreement d represents the ratio of the mean 

square error to the potential error. It ranges from 0 (no correlation) to 1 

(perfect fit) and is expressed as follows: 

 

𝑑 =  1 −
∑ (𝑂𝑖−𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖−𝑂|+|𝑂𝑖−𝑂|)2𝑛
𝑖=1

        (2) 

 

E and d criteria are based on absolute square errors between observed 

and predicted runoff. Because differences in higher values are expected 

to have a greater influence than those in lower values, relative forms of 

E and d were also calculated based on Krause et al. (2005). Relative E 

takes the form: 

 

𝐸𝑟𝑒𝑙 = 1 −
∑ (

𝑂𝑖−𝑃𝑖
𝑂𝑖

)
2

𝑛
𝑖=1

∑ (
𝑂𝑖−𝑂̅

𝑂̅
)

2
𝑛
𝑖=1

         (3) 

 

The index of agreement d based on relative deviations is expressed 

as follows: 
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𝑑𝑟𝑒𝑙 =  1 −
∑ (

𝑂𝑖−𝑃𝑖
𝑂𝑖

)
2

𝑛
𝑖=1

∑ (
|𝑃𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|

𝑂̅
)

2
𝑛
𝑖=1

        (4) 

 

 

Calibration-validation parameter extrapolation 

 

 

A common source of error in rainfall-runoff modeling is the extrapolation 

of model parameters from the calibration period to periods leading to less 

optimal runoff estimations (Coron et al., 2012; Merz et al., 2011). Coron 

et al. (2012) proposed a model robustness criteria (MRC) to evaluate 

performance losses caused by the parameter transfer from calibration (C) 

to validation (V): 

 

𝑀𝐶𝑅𝐶→𝑉 = 1 −
𝜀𝐶→𝑉

𝜀𝑉→𝑉
         (5) 

 

where ε is the objective function used in calibration (i.e., the square root 

transformed Nash-Sutcliffe efficiency); C→V is the parameter transfer 

term (i.e., sqrt E estimates on period V using the parameters calibrated 

on period C), and V→V is the optimum term (i.e., the maximum value of 

sqrt E obtained on period V during calibration). MRC should be positive, 

and as close to zero as the parameters calibrated on period C give a 

similar model fit than that obtained on period V. The higher the MRC 
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value, the less suitable the parameter set for the receiving period V 

(Coron et al., 2012). 

Another measure of the model error caused by parameter transfer 

from calibration to validation is the volume error VE (Merz et al., 2011). 

VE is a measure of bias on total runoff volumes and is defined as: 

 

𝑉𝐸 =
∑ 𝑃𝐶 →𝑉

𝑖 −∑ 𝑂𝑉
𝑖𝑛

𝑖=1
𝑛
𝑖=1

∑ 𝑂𝑉
𝑖𝑛

𝑖=1

        (6) 

 

Where Pi
C→V is the runoff predicted on period V using the 

parameters optimized in period C and Oi
V is the observed runoff on period 

V. Values of VE greater (or smaller) than zero indicate an overestimation 

(or an underestimation) of the total runoff volume; VE = 0 indicates no 

bias (Merz et al., 2011).  

MRC and VE values were analyzed relative to variations in mean 

annual rainfall ( ) and potential evapotranspiration ( ) to determine 

whether climate variability influence the quality of parameter transfer 

from calibration to validation (Coron et al., 2012). Changes in climate 

conditions were expressed as the ratio between  (or ) from period C 

to V.  

 

 

Results 
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Hydroclimatic variability in the upper Sauce Grande 

catchment 

 

 

Hydroclimatic variability within the study basin was analyzed first to help 

interpreting model results. Figure 3 shows variations in rainfall (P), 

potential evapotranspiration (PE), and runoff (Q) over the observation 

period (1916-1945). Annual rainfall exceeded ±1 standard deviation on 

10 out of 30 years, and the range between maximum and minimum P was 

as large as 670 mm yr-1; this is more than one of the mean annual rainfall 

observed along the period of record. Absolute variations in PE were less 

pronounced than those on P (722 < PE < 788). However, deviations from 

the interannual mean were significant (PE exceeded ±1 standard 

deviation on 50 % of years) and linked to variations in mean annual 

temperature (13 < T °C < 15). As the regional hydrological system is 

exclusively rainfed, rainfall emerges as the key variable driving variations 

in surface runoff. Yet runoff variations were notably larger than those 

observed on P, with maxima as high as 3.8 times the mean 

(Qmax = 472 mm yr-1) and minima as low as 0.3 the mean 

(Qmin = 36 mm yr-1). 
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Figure 3. Hydroclimatic variations over the period 1916-1945 and 

annual climatic conditions based on the Moisture Index of Thornthwaite 

(1948). Hydroclimatic variables include rainfall (P), potential 
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evapotranspiration (PE), and runoff (Q). Absolute values for all three 

variables were expressed in mm yr-1. 

 

The Thornthwaite’s Moisture Index (MI) was calculated to evaluate 

how variations in the catchment water balance may influence annual 

climatic conditions (Figure 3). The mean annual MI for the upper Sauce 

Grande catchment is -6.8 (and therefore indicates a dry subhumid 

climate). Yet the relationship between water deficit and water surplus for 

a given year suggests that climate conditions may vary from humid 

climate B3 (i.e., the climate type of north-eastern Argentina and Uruguay, 

Feddema, 2005) to semiarid climate (i.e., the climate type of Argentinian 

Patagonia Feddema, 2005). Such variations are not skewed but describe 

an overall tendency to the dryer- and wetter-than-normal conditions 

every roughly 10 years. This trend is also noticeable from deviations of 

averaged P and PE series. The late 10’s and the first half of the ’20s were 

wetter than normal though some years were also warmer. Thus, 

predominantly humid conditions were interspersed by years of a drier 

climate. The second half of the ’20s and a good part of the ’30s were 

markedly dryers and warmer than normal, and thus annual climate 

conditions shifted from dry to semiarid. Humid conditions prevailed again 

by the end of the ’30s and during the ’40s, in connection with an 

increasing trend in P and a marked decrease in PE. 

 

 

Rainfall-runoff modeling 
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Model calibration 

 

 

GR2M-97 and GR2M-06 parameters obtained from calibration are quite 

reasonable (Table 1). On the one hand, the capacity of the soil moisture 

reservoir H averages 136 mm (parameter X1). Although this value is 

larger than the potential soil retention S obtained from the application of 

the NRCS method for average moisture conditions (SII = 76 mm; Casado, 

2013), it falls within the range of S for dry (SI = 170 mm) and wet 

(SIII = 35 mm) antecedent conditions. Accordingly, a fixed value of 

X1 = 250 mm in GR2M-97 provided less suitable results than those 

obtained using a smaller value. The best fit was obtained for X1 = 75 mm, 

i.e., a value close to the NRCS S for average moisture conditions. On the 

other hand, GR2M-97 assumes that 58 % of the effective rainfall (Pe) 

becomes direct runoff (on average). This value is very close to the runoff 

coefficient (RC) of the upper Sauce Grande for average moisture 

conditions (RCII = 0.60) and falls within the range of RC obtained for dry 

(RCI = 0.42) and wet (RCIII = 0.74) antecedent conditions. The water 

exchange term X5 is common to both models and therefore exhibits 

similar behavior, i.e., it remains below unity in both cases. This indicates 

that there are no additional water supplies than those considered by the 

models but additional water losses.  
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Table 1. Distribution of GR2M-97 and GR2M-06 parameters optimized 

on 26 calibration periods of 5-yr length (1916-1945). 

Model Parameter Unit Min 1st Q Median 3rd Q Max Mean  SD 

GR2M-

97 

X3 - 0.40 0.52 0.56 0.63 0.77 0.58 0.09 

X5 - 0.44 0.47 0.67 0.77 0.84 0.64 0.14 

GR2M-

06 

X1 mm 87.0 106.1 112.8 135.8 200.2 126.5 32.5 

X5 - 0.62 0.69 0.84 0.86 0.90 0.79 0.09 

 

Despite the overall reliability of model parameters, distributions 

along the 26 calibration periods show moderate to high dispersion (Table 

1). This suggests that the model structure is very sensitive to variations 

in catchment conditions from one calibration period to another. Figure 4 

shows the relationship between model parameters by calibration period 

and correspondent values of mean annual rainfall ( ) and potential 

evapotranspiration ( ). Variations in the capacity of H (parameter X1 in 

GR2M-06) respond to variations in  more than to variations in  and, in 

opposition to what was expected, the relationship between H and  is 

positive. This indicates that rainfall amounts for some months may be too 

large relative to the observed runoff, and thus the capacity of H is 

increased to reduce the Pe entering the routing reservoir (see GR2M-06 

model descriptions in the methods section). Conversely, the relationship 

between parameter X3 in GR2M-97 and climate variables is quite 
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reasonable: The part of Pe that becomes direct runoff tends to increase 

with increasing  and to decrease with increasing . Interestingly, the 

water exchange term (parameter X5) responds strongly to variations in 

 in both models. In addition, correlations are positive (i.e., the higher 

the , the closer the value of X5 to unity). This indicates that potential 

evapotranspiration was either underestimated for several months along 

the simulation period or that this dryland catchment faces significant 

water losses owing to other drivers than those considered by the models. 
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Figure 4. Distribution of model parameters by calibration period relative 

to correspondent values of mean annual rainfall ( ) and potential 

evapotranspiration ( ). Correlation coefficients between model 

parameters and climate variables are indicated in bold. 
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Model performance 

 

 

GR2M-97 and GR2M-06 performance during calibration was first inspected 

to determine the model ability to simulate runoff from rainfall 

comparatively. Average flow conditions by calibration period were classed 

into four categories ranging from extreme low to extreme high to help 

interpreting model results. Flow categories were defined by the 10th, 50th, 

and 90th percentiles of annual runoff volumes recorded over the 

observation period.  

Both GR2M-97 and GR2M-06 models perform very suitably for 

runoff simulation (Figure 5). On average, they explain 90 and 88 % of the 

total runoff variance, respectively, and describe 97 % of agreement. As 

the models were calibrated based on square-root transformed runoff, 

values of E and d on periods of extremely high flow tended to be sensibly 

lower than average because the oversensitivity of E to high flow conditions 

was reduced. Indeed, higher model performance was found for periods 

exhibiting intermediate flow conditions. Because E and d criteria are of 

the mean square error type (i.e., they compensate for the higher absolute 

differences between predicted and observed runoff), the lower model 

performance was found on periods where prevailing flow conditions were 

extremely low (e.g., P12 & P13). Interestingly, GR2M-06 performed more 

poorly than GR2M-97 for both extremely high and extremely low flow 

conditions. Minimum values of E and d were 0.75 and 0.94, respectively, 

and were attained on calibration period P13.  
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Figure 5. Performance of the GR2M-97 and GR2M-06 models by 

calibration period (P1 to P26). Radial charts increase from 0.5 (center) 

to 1 (outbound circle).  

 

Relative forms of E and d were calculated to bypass the sensitivity 

of these criteria to extreme values (Figure 5). Relative model performance 

is naturally lower in both cases because absolute runoff differences for 

months of low flow are now significant. Both models reached the lower 
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performance on periods of extremely low flow, indicating systematic over 

(or under) predictions of little runoff volumes. There were some periods, 

however, where relative model performance was more or less suitable 

irrespective of prevailing flow conditions. This may be explained by the 

relationship between flow variability and constancy along the calibration 

periods. 

Flow variability and constancy were determined based on the 

coefficient of variation (CV) and the coefficient of dispersion (CD) of 

monthly flows on each calibration period. CV is affected by extreme flow 

values, and thus indicates the relative magnitude of flow variations, 

whereas CD is affected by the interquartile distribution of monthly flows, 

and thus indicates the frequency of such variations. On periods describing 

high flow variability (CV > 50th percentile of all CV) and extreme high flow 

dispersion (CD > 90th percentile of all CD), relative model performance 

dropped by up to 19 % (GR2M-97) and 12 % (GR2M-06) relative to 

absolute performance (e.g., P25 on Figure 5). This suggests that short-

termed flow variability may be an important factor affecting the model 

efficiency to simulate the full range of flows. Conversely, on periods 

describing high flow variability but extreme low dispersion (i.e., flows 

were predominantly constant), relative model efficiency was more 

suitable. Indeed, model parameters are adjusted to prevailing flow 

conditions more than to scattered flow variations, irrespective of their 

magnitude. An example of this are calibration periods P17 & P18 (Figure 

5), where roughly constant low flow conditions were interrupted by two 

peaks of high relative magnitude. An interesting aspect to highlight is that 

the relative efficiency of GR2M-97 on such periods increased concerning 
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absolute terms, indicating higher model sensitivity to low flows than 

GR2M-06. 

From the above, it results that GR2M-97 performs better than 

GR2M-06 to predict runoff in this dryland catchment. First, absolute model 

efficiency on periods exhibiting extreme high and extreme low flows is 

higher than for GR2M-06, suggesting higher model sensitivity to 

contrasting flow conditions. Second, the relative efficiency of GR2M-97 is 

higher irrespective of prevailing flow conditions, indicating greater 

structure adaptability to the range of flows that may be expected to occur 

in the long term. Consequently, the GR2M-06 model is excluded from the 

analysis and the following sections focus on the GR2M-97 model instead. 

 

 

Potential for transferability of model parameters 

 

 

The potential for transferability of GR2M-97 parameters was determined 

from series of calibration-validation tests based on the GSST procedure 

(Figure 6). Average efficiency losses were 22 % and mean bias on total 

volumes was 6 %. The magnitude of MRC values and the direction of VE 

(i.e., positive, or negative) were linked to prevailing flow conditions on 

validation periods. MRC values were higher on validation periods receiving 

parameters calibrated on more humid periods, with maximum attained on 

period P20 (up to 105 % efficiency loss). In addition, concurrent 
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variations in VE indicate that efficiency losses on low-flow periods respond 

to an overestimation of total runoff volumes. Efficiency losses on high-

flow periods were lower, yet important and linked to underestimation of 

runoff volumes.  

 

 

Figure 6. GR2M-97 performance variations from calibration to 

validation based on A) a model robustness criteria (MRC), and B) the 

volume error [VE]. The black thick line illustrates the mean annual 

runoff by the validation period. 

 

MRC and VE values were inspected against variations in  and  to 

determine whether there is a link between model performance and 

varying climate conditions from calibration to validation (Figure 7). MRC 

values showed no clear trends relative to variations in climate. Indeed, 
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previous results suggested that the efficiency of GR2M-97 for runoff 

predictions depended on prevailing flow conditions and, by extension, on 

the relationship between magnitude, variability, and constancy of monthly 

flows. Despite this relationship is driven by variations in P and PE, climate 

variations expressed as 5-yr mean annual values are too general to 

capture such a relationship. There is, however, a clustering tendency of 

high MRC values on quadrants I and IV. This indicates that performance 

losses may occur for parameter transfer from periods dryer and warmer 

(I) or wetter and cooler (IV) than the receiving period for validation.  

 

 

Figure 7. Distribution of MRC and VE values against relative variations 

in mean annual rainfall ( ) and potential evapotranspiration ( ) from 

calibration to validation. 

 

Clearer trends emerged from the relationship between climate and 

bias on total volumes (Figure 7). Variations in  clearly separate 
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overestimation (VE > 0) from underestimation (VE < 0) of runoff 

volumes. Overestimation in runoff predictions tends to occur on validation 

periods that are cooler than the calibration periods providing model 

parameters and the other way around, underestimations tend to occur on 

validation periods that are warmer and exhibit logically higher . On the 

other hand, variations on  influence the magnitude of the volume error. 

Thus, the higher bias tends to cluster on validation periods that are wetter 

than those providing model parameters (quadrant I), whereas the lower 

bias is found for receiving periods that are dryer (quadrant IV).  

 

 

Modeling runoff from rainfall in the context of climate-

driven flow variability 

 

 

The above results suggest that a) the performance of GR2M is very 

sensitive to variations on prevailing flow conditions driven by variations 

in climate, and that b) parameter transfer from calibration to validation 

may result in notably less optimal model results. This section aims 

therefore at finding the best parameter combination to simulate runoff 

from rainfall under non-stationary climate conditions on a continuous 

monthly basis. Because the GSST procedure considers all possible climate 

combinations that may prevail in the long term, it results in that model 
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parameters obtained from these combinations may be pooled together to 

adjust the model structure to climate variability.  

Figure 8 shows the results obtained from regression tree learning, 

where a) model parameters by calibration period are the dependent 

variable; and b) concurrent mean annual runoff ( ), rainfall ( ) and 

potential evapotranspiration ( ) are the explanatory variables. 

Regressions included series of  in addition to input variables  and  

because previous results indicated that the model structure was very 

sensitive to prevailing flow conditions. The best fit between observed and 

predicted parameter values were obtained from 2-level regression rules 

for both X3 and X5. Tree regressions are quite consistent with previous 

results; the direct runoff term X3 depends on the balance between water 

gains and losses (i.e.,  and ), whereas the water exchange term, 

depends on water losses relative to water availability (i.e.,  and ). 
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Figure 8. Tree regressions of GR2M-97 model parameters based on 

mean annual runoff ( ), rainfall ( ) and potential evapotranspiration 

( ) by calibration period. A) Parameter X3; B) Parameter X5. In bold, 

coefficients of determination between observed and predicted parameter 

values. 

 

GR2M-97 was run on a continuous monthly basis from 1916 to 1945 

using these rules. Antecedent hydroclimatic conditions were averaged 

using different periods to determine the combination producing the best 

model fit. Because model parameters compensate for catchment 

conditions on windows of 5-yr length, the best results were achieved for 
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5-yr averaged antecedent P, PE, and Q. Model results are illustrated in 

Figure 9 along with absolute and relative metrics of model performance. 

Although there is a tendency to underestimation of extreme high flows 

(which results in an underestimation of total runoff volumes by 4 %), the 

model provides a very good fit for the full range of hydrological conditions 

that occur throughout the observation period. Comparison of model 

performance during calibration and prediction for equivalent periods 

shows that, on average, E = + 0.1 %, d = + 0.1 %, Erel = -12.0 %, and 

drel = -2.3 %. Even though these values are not very significant (or even 

denote performance loss from calibration to prediction), it should be noted 

that these results are notably higher than those obtained by a simple 

transfer of parameters between calibration and validation, where E = -

21.0 %, d = -5.0 %, Erel = -38.4 % and drel = -6.3 % on average. 

Furthermore, mean variations of the sqrt E (objective function) from 

calibration to prediction are only -0.7 %. It can be therefore concluded 

that allowing model parameters to evolve along with varying climate 

conditions improves long-term runoff predictions in this dryland 

catchment.  
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Figure 9. Predicted monthly runoff in the upper Sauce Grande 

catchment over the period 1916-1945. Runoff predictions were obtained 

from the application of the GR2M-97 model and climate-dependent tree 

regressions of model parameters.  

 

 

Discussion 

 

 

Model simplicity and robustness  
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The movement towards developing conceptual rainfall-runoff models 

working with few parameters is not new (Jakeman & Hornberger, 1993; 

Perrin et al., 2001), and many studies have demonstrated already that 

simple, conceptual models do not necessarily provide less optimal results 

(e.g., Boughton, 2004; Ibrahim & Cordery, 1995; Mimikou & Rao, 1983; 

Mishra & Singh, 2004). GR2M belongs to this model community and 

results from intensive research efforts towards developing a conceptual, 

simple monthly rainfall-runoff model “that guarantee its robustness and 

make the research for parameter explanation easier” (Makhlouf & Michel, 

1994: 1). The greatest advantages of GR2M are the simplicity yet 

robustness, adaptability, and accuracy of the model structure, and its 

ease of use, which increases its potential for applicability under a range 

of time and spatial scales (Paturel, Servat, & Vassiliadis, 1995). In 

addition, the two GR2M versions tested here were specifically developed 

to increase its efficiency for low flow simulation (Lavabre et al., 1997) as 

well as its applicability under varying climate conditions (Mouelhi et al., 

2006), both aspects being particularly relevant in drylands.  

Results from this investigation indicate that both model versions, 

GR2M-97 and GR2M-06, perform suitably to predict monthly runoff in this 

dryland catchment. Coefficients of efficiency during calibration averaged 

90 %, and the percent agreement between observed and predicted runoff 

series was 97 %. Similar results were obtained for other drylands 

worldwide either for regional scales (e.g., the southern half of France, 



 

 

 

2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

290 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(5), 254-303. DOI: 10.24850/j-tyca-2021-05-06 

Folton & Lavabre, 2007; eastern Algeria, Mebarki, 2010; Bachir, Nouar, 

Hicham, Azzedine, & Larbi, 2015) or for a single catchment scale (e.g., 

the Nazas catchment in Mexico, Carmona, Ramírez, González, Caciano, & 

Ávalos, 2013; the Oued Louza catchment in Algeria, Djellouli et al., 2015; 

the Tahtali catchment in Turkey, Okkan & Fistikoglu, 2014). 

Irrespective of the overall suitability in runoff predictions, the 

application of the GSST procedure revealed marked performance 

differences from one calibration period to another linked to climate-driven 

variations in prevailing flow conditions. Furthermore, relative 

performance analysis revealed that GR2M-97 and GR2M-06 performed 

better on periods exhibiting either low flow variability, flow constancy, or 

both. This may be explained by the fact that model parameters are 

optimized under average hydroclimatic variations occurring along the 

period used for calibration (Coron et al., 2012). Thus, the higher the 

variability and dispersion of flows along such a period, the higher the 

proportion of flow conditions remaining above or below standard 

conditions. The model performance to simulate the full range of flows is 

consequently lower. Argentinean dryland rivers are among the most 

variable in the world (McMahon, Peel, Vogel, & Pegram, 2007), and it is 

therefore not surprising that absolute and relative model efficiency ranged 

of 19 and 39 % along the 26 calibration periods, respectively. 

Another important aspect to highlight is that GR2M-97 performed 

better than GR2M-06 for similar flow conditions. In addition to the way 

initial abstractions are computed, the main differences between the two 

model versions are given by a) the parameters left free for calibration; 

and b) the role of parameters X4 and X5 for computation of runoff outputs. 
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Among all of these potential reasons, this study postulates that the 

superiority of GR2M-97 to predict runoff in this dryland catchment is 

primarily linked to one distinct parameter governing a good part of the 

model structure: parameter X3. GR2M-97 builds on determining the 

fraction of effective rainfall exceeding the soil infiltration capacity (i.e., 

direct runoff), whereas in GR2M-06 all the effective rainfall enters the 

routing reservoir (i.e., direct runoff equals zero). Infiltration-excess 

surface flow may represent a significant proportion of dryland runoff 

during wet periods (Graf, 1988), and thus GR2M-97 tends to be more able 

to simulate high flow magnitude than GR2M-06. On the other hand, many 

studies have demonstrated that runoff generation in drylands exhibits 

strong non-linear dependence on antecedent wetness (Beven, 2002). 

Non-linearity is given in both models by free parameters X1 and X3 

regulating the catchment response to variable P and PE inputs. Although 

calibrating X1 (i.e., the capacity of H) could explain the reason why GR2M-

06 performs suitably as well, leaving parameter X1 free in GR2M-97 did 

not provide clear improvements of model results. This suggests that 

calibrating the capacity of H may contribute very little to the model 

performance whether an adequate maximum capacity has been fixed. 

Another important reason explaining the superiority of GR2M-97 is the 

way runoff outputs are computed. After catchment water exchanges were 

computed, total runoff in GR2M-06 is proportional to the content of the 

routing reservoir (S) relative to a fixed capacity. In GR2M-97, total runoff 

equals the sum of surface and subsurface flows adjusted for catchment 

water exchanges. Subsurface flows are also proportional to the content of 

S, although S has an unfixed capacity. This ensures baseflow maintenance 
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during dry spells and probably explains the superiority of GR2M-97 for 

low flow simulation in this perennial, dryland catchment. 

 

 

Time instability of model parameters 

 

 

Calibration-validation tests along the entire period of record (1916-1945) 

revealed that a) performance losses are most marked when model 

parameters are transferred from periods of higher flow, and b) such losses 

respond to overestimations in runoff predictions. Efficiency losses on high-

flow periods were lower yet existed and were linked to underestimation 

of runoff volumes. Performance loss from calibration to validation 

responds to the combination of two aspects: a) model parameters 

compensate for problems in input data and structure-related model 

approximations that may change for different calibration periods, and b) 

the general idea of stability in catchment conditions, though meaningful 

differences may exist between the two periods (Coron et al., 2012; Merz 

et al., 2011). From both, the second aspect appears to be more 

meaningful in this highly variable dryland catchment, because if 

catchment conditions change, model parameters will also change.  As 

argued by Brigode, Oudin, and Perrin (2013: 411): “different time periods 

used for calibration may provide quite different optimum parameter sets, 

depending on whether the period is dry or wet, for example, thus 
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providing an estimation of parameter uncertainty with respect to their 

lack of robustness”. 

Reliable predictions of catchment runoff yields are required to help 

decision-makers on future water planning and management (Vaze et al., 

2011). Thus, the time (in)stability of parameters in hydrological modeling 

is the object of increasing research efforts worldwide, either in the context 

of climate variability (Coron et al., 2012; Louvet, Paturel, Mahé, Rouché, 

& Koité, 2016; Niel, Paturel, & Servat, 2003) or climate change (Brigode 

et al., 2013; Merz et al., 2011; Vaze et al., 2010). However, few studies 

have investigated how to handle the transferability of time-varying 

parameters to minimize performance loss in runoff predictions (Zeng, 

Xiong, Liu, Chen, & Kim, 2019). In addition, studies assessing the time 

(in)stability of model parameters in drylands are far less abundant than 

those assessing the efficiency of hydrological modeling on these distinct 

fluvial environments.  

To improve the predictive performance of GR2M-97, this study used 

three regressions between model parameters and averaged hydroclimatic 

conditions by calibration period. This allowed model parameters to evolve 

over time, by varying, contrasting climate-driven flow conditions 

throughout the record. A similar approach was implemented by Wallner 

and Haberlandt (2015), although they used self-organized maps based on 

artificial neuron networks. Through this modification, the predictive 

efficiency of GR2M improved by 97 % concerning average efficiency losses 

from parameter transfer. Although model results are highly suitable in 

both absolute and relative terms, it should be noted that the model 



 

 

 

2021, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

294 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(5), 254-303. DOI: 10.24850/j-tyca-2021-05-06 

applicability outside the range of flow conditions that occurred during the 

calibration and verification periods is uncertain. 

 

 

Conclusions 

 

 

This paper tested the applicability of a simple conceptual hydrological 

model (GR2M) to predict long-term monthly runoff in a poorly gauged 

dryland catchment and implemented a GSST procedure to determine the 

influence of parameter transfer on model predictions under varying 

catchment conditions. In addition, two different model versions were 

evaluated and compared to determine the parameters that are more 

sensitive to dryland catchment hydrology. Both model versions provided 

suitable runoff predictions, in accordance with the results obtained for 

other dryland catchments worldwide. However, results showed that a) the 

quality of model predictions are affected by the magnitude, variability, 

and constancy of prevailing flow conditions from one calibration period to 

another, and b) performance differences between both model versions 

are effectively linked to the model structure; GR2M-97 showing higher 

sensitivity to extreme flow conditions and greater adaptability to flow 

variability. Reliable runoff predictions under contrasting catchment 

conditions are essential in drylands because water scarcity has as many 
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implications on water resources planning and management as water 

excess. Although most models are currently available in literature will 

provide reliable results whether hydrological data for calibration are 

available, these findings outline the need for evaluating and comparing 

model parameters and approaches that best match hydrological processes 

within these distinct yet diverse fluvial environments.  

In addition, this study showed that parameter transfer from 

calibration to validation may result in marked performance losses due to 

runoff overestimations on periods of lower flows than those observed on 

calibration, and vice versa. A simple method based on regression tree 

learning was proposed to overcome the timing instability of model 

parameters. Through this modification, model predictions improved 

notably. These results provide an important platform on which to base 

further investigations assessing the implications of climate-driven flow 

variability for future water resources planning and management. Yet the 

model applicability outside the range of flows that occurred over the 

period of record is highly uncertain. In this regard, further research efforts 

should center on evaluating the model's adaptability to current catchment 

conditions as well as its potential for transferability to other regional 

catchments.  
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