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Abstract 

Integrated data assimilation for flow forecasting can provide flexibility and 

reduce systematic errors in the models. In this work we evaluate the 

predictive capacity of the discrete Kalman filter, ensemble Kalman filter, 

and its integration, using hourly flow records from Chapalagana and 

Platanitos stations located on the Huaynamota river, hydrological region 

12. The basin is located in the northwest of the Mexican Republic and is 

shared between the states of Durango, Nayarit, Zacatecas, and Jalisco. 
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For the analysis, series with 1360 data from 2017 were used, from August 

2nd at 9:00 a.m. to September 28th at 0:00 a.m. Forecasts were 

evaluated at 1, 2, 3, 4, 5, and 6 steps forward, combined with set sizes 

of 5, 8, 10, 20, 50, and 100 members using measurements at the 

Platanitos station as an exogenous variable. The fit between observed and 

predicted series was estimated using the Nash-Sutcliffe coefficient and 

the mean square root of the error to determine that the discrete Kalman 

filter achieves better fit and update based on the time delay between 

series. The Ensemble Kalman filter generates smoothing of the predicted 

series, and the integration of filters increases the displacement effect of 

the predicted series. The discrete Kalman filter achieves superior 

adjustment to ARX and the ARX-DKF combination. 

Keywords: Kalman filter, ensembles, autoregressive models, short-term 

streamflow forecasting. 

 

Resumen 

La asimilación de datos integrada para el pronóstico de caudales puede 

brindar flexibilidad y reducción de errores sistemáticos en los modelos. 

En este trabajo se evalúan la capacidad predictiva del filtro de Kalman 

discreto, filtro de Kalman de conjuntos y su integración, utilizando 

registros horarios de caudal de las estaciones Chapalagana y Platanitos 

ubicadas sobre el río Huaynamota, región hidrológica 12. La cuenca se 

ubica al noroeste de la república mexicana, y se comparte entre los 

estados de Durango, Nayarit, Zacatecas y Jalisco. Para el análisis se 

utilizaron series con 1 360 registros horarios del año 2017 comprendidos 
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entre el 2 de agosto a las 9:00 horas hasta el 28 de septiembre a las 0:00 

horas. Se realizaron pronósticos a 1, 2, 3, 4, 5 y 6 pasos hacia adelante, 

combinados con tamaños de conjunto de 5, 8, 10, 20, 50 y 100 miembros 

utilizando caudales de la estación Platanitos como variable exógena. El 

ajuste entre la serie observada y las pronosticadas se estimó mediante el 

coeficiente de Nash-Sutcliffe y la raíz del cuadrado medio del error para 

determinar que el filtro de Kalman discreto alcanza mejor ajuste y 

actualización con base en el tiempo de retraso entre series. El filtro de 

Kalman de conjuntos genera un suavizado de la serie pronosticada, y al 

igual que la integración de filtros aumenta el efecto de desplazamiento de 

la serie pronosticada. El filtro de Kalman discreto alcanza ajuste superior 

a ARX y a la combinación ARX-DKF. 

Palabras clave: filtro de Kalman, conjuntos, modelos autorregresivos, 

pronósticos de caudales a corto plazo. 
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Introduction 

 

 

Data assimilation for estimating states is essential to applications of 

hydrologic forecasting (Liu et al., 2012) since, by cyclic updating, errors 

accumulated in the models can be reduced (Clark et al., 2008; Maxwell, 

Jackson, & McGregor, 2018). The ensemble Kalman filter (ENKF) 

(Evensen, 1994) is one of the algorithms widely used as a recursive 

method in hydrology (Liu & Gupta, 2007; Maxwell et al., 2018; Sun, 

Seidou, Nistor, & Liu, 2016). It is an extension of the discrete Kalman 

filter (Kalman, 1960) for treating non-linear dynamic systems (Evensen, 

1994; Evensen, 2003) and has been used, among others, to forecast 

streamflows (Maxwell et al., 2018), evapotranspiration (Zou, Zhan, Xia, 

Wang, & Gippel, 2017) and soil moisture (Brandhorst, Erdal, & Neuweiler, 

2017; Meng, Xie, & Liang, 2017). Moreover, it has been integrated with 

distributed hydrological models such as TopNet, Hydrotel, and MGB-IPH ( 

Abaza, Anctil, Fortin, & Turcotte, 2015; Clark et al., 2008; Quiroz, 

Collischonn, & Paiva, 2019). 

In hydrographic basin systems, the relationship between flows 

measured at different positions and a point of interest can be identified, 

what is called a response function (Valdés, Mejía, & Rodríguez-Iturbe, 
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1980). Based on this relationship, it is possible to make short-term 

forecasts that are updated constantly and indefinitely while the 

phenomenon under study persists. 

In this study, we evaluated the forecasting capacity of the discrete 

Kalman filter (DKF) (Kalman, 1960), the ensemble Kalman filter (EnKF) 

(Evensen, 1994), and the integration of DKF with EnKF for forecasting one 

to six steps forward of the Huaynamota River flow at the Chapalagana 

station. The DKF is implemented to estimate the state vector 

(Instantaneous Unit Hydrograph – IUH) and the EnKF makes scale 

estimation of flow. The integration is carried out using the EnKF equation 

of states.  

 

 

Materials and methods 

 

 

The study area is delimited upriver from the Chapalagana station on the 

Huaynamota River (Chapalagana River or Atengo River), located in 

northwestern Mexico and shared by the states of Durango, Nayarit, 

Zacatecas, and Jalisco (INEGI, 2010) (Figure 1). Geographically, it is 

between -104° 33’ 34.16” and -103° 27’ 29.84” W and between 23° 28’ 

50.05” and 21°23’57.62” N. It has an area of 12 075.7 km2. The altitude 
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at the highest point is 3147 m and at the lowest point, at the Chapalagana 

station, is 219 m. The concentration type is 39.88 hours. The mean annual 

precipitation is 707 mm and the mean annual temperature is 17.9 °C 

(SMN, 2019). 
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Figure 1. Location of the study area. 
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The main hydraulic structure for generating electricity found 

downriver from the study area and on the River Lerma-Santiago Pacific is 

the Solidaridad dam, commonly known as Aguamilpa, located at -

104°48’10.55” W and 21°50’22.74” N. It has a capacity of 5 540 million 

m3 and generates 960 MW of electricity (Conagua, 2008). The Aguamilpa 

dam is approximately 90 km from the Pacific coast of Nayarit where the 

Santiago River empties.  

We evaluated the predictive capacity of the Discrete Kalman Filter 

(DKF) (Kalman, 1960), the Ensemble Kalman Filter (EnKF) (Evensen, 

1994), the integration of DKF and EnKF (DKF-EnKF), and the 

autoregressive model with a first-order exogenous variable (AR(1,1)) to 

forecast at 1, 2, 3, 4, 5, and 6 hours (L steps) forward of hourly flows at 

the Chapalagana station, based on the flows at the Platanito station, 

located upriver, as the exogenous variable. We used hourly flow series 

from 2017 between August 2 at 9:00 hours and September 28 at 0:00 

hours, for a total of 1360 registers provided by the Comisión Federal de 

Electricidad (CFE). For analysis of set size sensitivity, we used 5, 8, 10, 

20, 50, and 100 members, which were combined with the six steps.  

DKF, EnKF, DKF-EnKF, and ARX (1,1) were implemented by means 

of routines in R (R Core Team, 2020), which generate the forecasts in six 

steps with DKF and ARX, and with 36 combinations between steps by set 

size in EnKF and DKF-EnKF. DKF was implemented to estimate the state 

vector that is equivalent to the response function of the basin or 

Instantaneous Unit Hydrograph (IUH) (Valdés et al., 1980), and EnKF 
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makes scale estimations of the flow (Evensen, 2009). That is, DKF 

estimates the values corresponding to the IUH columns that are multiplied 

by the flow values, while EnKF estimates flow values directly. In the three 

cases with filters, the final observations of each variable are considered, 

that is, an autoregressive delay (Valdés et al., 1980). The ARX model was 

implemented recursively based on a fraction of a 100-register series.  

The suitable number of members in the EnKF and DKF-EnKF sets 

was determined with a sensitivity analysis, based on the mean square 

root error (MSRE) (Quiroz et al., 2019). White noise (Monte Carlo 

simulation) was generated with mvtnorm software (multivariant and 

normal t distribution) (Genz & Bretz, 2009). In the three algorithms 

evaluated the Q variance was assumed to be constant (Simon, 2001), that 

is, zero (Morales-Velázquez, Aparicio, & Valdes, 2014), and R to be near-

zero (0.01) to confer flexibility to the convergence of the algorithm (Welch 

& Bishop, 2006). 

The fit of the forecasted series was evaluated with the Nash-

Sutcliffe coefficient (Nash & Sutcliffe, 1970) and the mean square root 

error (MSRE) (Morales-Velázquez et al., 2014). The assumptions of error 

normality of the Kalman Filter were verified using graphs that were 

compared with the normal standardized curve (González-Leiva, Ibáñez-

Castillo, Valdés, Vázquez-Peña, & Ruiz-García, 2015). Atypical values and 

their location were determined based on standardized residuals (Cryer & 

Chan, 2008). 
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Discrete Kalman Filter 

 

 

The Discrete Kalman Filter is an algorithm that allows the identification of 

linear dynamic systems as an optimal estimator of states using a recursive 

process (Kalman, 1960) (Figure 2). DKF serves as a basis for algorithms 

that deal with non-linear systems (Welch & Bishop, 2006). 
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Figure 2. Discrete Kalman filter algorithm (Welch & Bishop, 2006). 

 

The state equation has as entry data two-hourly flow series (𝑛) from 

the Chapalagana and Platanitos stations. Matrix A (𝑛 𝑥 𝑛) and B (𝑛 𝑥 1) 

relate the state of time 𝑘 − 1 with the current state of time 𝑘. Because in 

the river course there are no hydraulic structures such as dams that would 

suddenly alter flow volumes, in this study a control variable was not 

considered, and only matrix A, which was assumed constant throughout 



 
 

 
2021, Instituto Mexicano de Tecnología del Agua 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-
sa/4.0/) 

 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 12(6), 239-281. DOI: 10.24850/j-tyca-2021-06-06 

 

the process, was used. Matrix H is the measurement equation is 

composed of a vector row of 1 𝑥 𝑛 that contains the last observation of 

each entry variable. The predicted value 𝑧𝑘 is obtained with the 

measurement equation, multiplying matrix H by the state vector 𝑥𝑘
− 

(𝑛 𝑥 1). Following, matrix A, which relates the previous state to the current 

state, is presented.  

 

𝐴 = [
1 0
0 1

]           (1) 

 

The new measurement for time 𝑘 (𝑄𝑘) is used to update the 

algorithm according to the changes that are occurring in the system, and 

the predicted value 𝑧𝑘 (corresponding to a flow value of size 𝑝) implicitly 

carries the measurement error 𝑤𝑘−1, and the state equation contains the 

process error 𝑣𝑘, which must satisfy the assumption of normality: 

 

𝑤𝑘 = 𝑁(0, 𝑄) ; 𝑣𝑘 = 𝑁(0,𝑅)       (2) 

 

A cycle that repeats indefinitely begins with the state and 

measurement equations of the algorithm. At time 𝑘 − 1 it makes an a priori 

estimate (forecast) of the states that are updated (a posteriori estimation) 

in time 𝑘. The states are taken as the basin’s response function, and with 

the a posteriori estimation, the forecast in time 𝑘 + 1 is made. This cycle 
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is repeated indefinitely, forecasting time 𝑘 + 1 based on matrix H and the 

updated state vector up to time 𝑘. 

 

 

Ensemble Kalman Filter  

 

 

The Ensemble Kalman Filter (EnKF) is a suboptimal estimator based on 

Monte Carlo simulations for estimating statistical error (Evensen, 1994; 

Gillijns et al., 2006; Rafieeinasab, Seo, Lee, & Kim, 2014). Normal 

distribution of errors is assumed, and the estimations are made based on 

ensembles that group 𝑞 values generated at random under normal 

distribution. Like DKF, it has two groups of equations: analysis and 

prediction. In Figure 3, the first two equations have their equivalents in 

DKF, and the latter corresponds to the average of the members, which is 

assumed to be a better forecast. The second group, in general, comprises 

four equations where errors and probabilities, which are inputs to 

calculate the Kalman gain, are estimated (Gillijns et al., 2006. 
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Figure 3. Algorithm of the ensemble Kalman filter (Gillijns et al., 2006). 

 

The errors 𝑤𝑘
𝑖  and 𝑣𝑘

𝑖  correspond to the noise the process and the 

measurement contains, respectively, and are assumed as white noise with 

mean zero and variance 𝑄 and 𝑅 (Figure 3), as in equation 2. For the flow 

forecast, the response function (𝑥𝑘+1
𝑓

) of EnKF was established 

incorporating white noise 𝑤𝑘
𝑖  into the previous states 𝑥𝑘−1

𝑎𝑖 : 
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𝑥𝑘+1
𝑓 = 𝑥𝑘

𝑎𝑖 + 𝑤𝑘
𝑖          (3) 

 

Noise in the measurements is generated by adding the 

measurement in time 𝑘, 𝑞 deviations with normal distribution.  

 

𝑦𝑘
𝑖 = 𝑦𝑘 + 𝑣𝑘

𝑖           (4) 

 

Vector 𝑦𝑘
𝑖  of 1 𝑥 𝑞 corresponds to 𝑞 noisy measurements, 𝑦𝑘 is the 

measurement in time 𝑘, and the subindex 𝑖 represents the number of 

members corresponding to 𝑖 = 1,2,… , … , 𝑞. That is, 𝑞 values are generated 

at random under a normal distribution and are added to the observed 

value, resulting in a 𝑞-sized vector with the observed value as the mean. 

It is assumed that a larger number of members will be the fit of the 

forecast because a better estimation of the distribution of probabilities 

can be obtained (Leutbecher, 2019). However, increasing the number of 

members implies greater computational effort. Therefore, an analysis of 

sensitivity should be done to determine the number that obtains a 

minimum of errors with acceptable computational effort. For hydrological 

studies, between 50 and 300 members per set are suggested (Gillijns et 

al., 2006; Quiroz et al., 2019). 
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Discrete Kalman filter and ensemble Kalman filter  

 

 

DKF and EnKF were integrated using the state equation of the EnKF 

algorithm. DKF generates a forecast for time 𝑘 + 1 (𝑄̂𝑘+1), with which the 

difference relative to the previous state of EnKF (𝑥𝑘−1
𝑎𝑖 ) is determined and 

which is finally added to the previous state 𝑥𝑘−1
𝑎𝑖 . Moreover, white noise is 

added using Monte Carlo simulation 𝑤𝑘
𝑖 . 

 

𝑥𝑘+1
𝑓

= 𝑥𝑘−1
𝑎𝑖 + (𝑄̂𝑘 +1 − 𝑥𝑘−1

𝑎𝑖 ) + 𝑤𝑘
𝑖        (5) 

 

 

First-order autoregressive model (ARX(1,1)) and DKF 

 

 

The first-order autoregressive model, also known as the Markov model, is 

one of the first approximations for the study of time series. It is based on 

the autocorrelation that appears in the same data series (Box, Jenkins, 
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Reinsel, & Ljung, 2016; Bras & Rodríguez-Iturbe, 1985). Algebraically, it 

is described in the following form: 

 

𝑦𝑘+1 = ∑ 𝛼𝑖𝑦𝑘−𝑖 + ∑ 𝛽𝑗 𝛾𝑘 −𝑗
𝑛𝑏
𝑗=0 + 𝑒𝑘+1

𝑛𝑎
𝑖=0       (6) 

 

where 𝑦𝑘+1 is the predicted value, 𝛼𝑖 and 𝛽𝑗  are the model parameters, 

and 𝑦𝑘 and 𝛾𝑘  are the entry variable and the exogenous variable, 

respectively. The parameters are estimated by least squares and require 

a section of series of at least 50 registers. In the model, ARX(na, nb), na 

and nb represent the autoregressive delays that are used in each variable. 

The ARX model estimates parameters 𝛼 and 𝛽, which are incorporated 

into matrix A of the DKF algorithm (Figure 2), and updating is applied to 

the flow for the forecast in the following cycle.  

 

 

Results and discussion  

 

 

We evaluated a total of 36 combinations resulting from six steps (𝐿) by 

six set sizes. The three algorithms were executed with 1360 hourly flow 
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registers from the Chapalagana and Platanitos stations to obtain flow 

forecasts at the Chapalagana station.  

Figure 4 shows the sensitivity analysis that allows identification of 

the suitable set size for the EnKF (dotted line) and DKF-EnKF (solid line) 

algorithms through the relationship between the MSRE value as the 

number of set members increases. The set with five members has the 

highest MSRE in each of the L steps. When there are 8 and 10 members, 

the variations have a slight tendency to diminish, and the sets with 20, 

50, and 100 members reflect convergence and stability. Therefore, in the 

case of the series under study, to optimize the fit and the computational 

load, 20 members can be used. The combination DKF-EnKF in the six L 

steps has higher MSRE values than EnKF, and the differences are 

increasingly notable in larger steps. However, convergence is reached as 

of 20 members per set.  
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Figure 4. Root mean square error with different ensemble sizes.  

 

The importance of defining the suitable number of members lies in 

obtaining the best possible fit without adding a computational load that 

does not improve the behavior of the algorithm. When sets are large, 

computational load is high, but if small sets are used, fit between the 

observed and predicted series can be lost (Gillijns et al., 2006; Quiroz et 

al., 2019).  

The results we present are based on 20 members per set. Table 1 

presents the statistical indicators of fit of the observed series against the 

predicted series.  
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Table 1. Summary of statistics for application of para la DKF, EnKF, 

DKF-EnKF, and ARX-DKF. 

 Index L1 L2 L3 L4 L5 L6 SDs 

DKF 

RMSE 24.76 39.55 50.46 59.21 67.20 74.49 18.36 

Nash-Sutcliffe 0.9869 0.9666 0.9457 0.9252 0.9037 0.8816 0.0393 

Mean 161.55 161.71 161.39 161.57 160.74 160.67 0.45 

SDp 217.58 216.33 213.69 212.47 209.96 208.30 3.58 

EnKF 

RMSE 25.08 41.00 53.99 66.40 76.04 89.93 23.67 

Nash-Sutcliffe 0.9866 0.9641 0.9378 0.9060 0.8767 0.8275 0.0587 

Mean 160.65 160.55 160.88 160.15 160.93 161.27 0.38 

SDp 216.48 215.81 217.25 216.67 218.17 219.18 1.23 

DKF-EnKF 

RMSE 25.83 45.45 60.29 80.57 92.24 116.41 32.89 

Nash-Sutcliffe 0.9858 0.9559 0.9225 0.8616 0.8185 0.7110 0.1013 

Mean 160.28 159.51 159.78 160.34 161.64 162.09 1.03 

SDp 216.21 217.95 219.67 226.07 229.10 239.75 8.84 

ARX-DKF 

RMSE 26.07 44.11 59.70 72.60 83.23 91.65 24.71 

Nash-Sutcliffe 0.9855 0.9586 0.9243 0.8882 0.8532 0.8222 0.0625 

Mean 163.32 165.27 166.79 168.01 169.71 170.52 2.72 

SDp 219.90 222.08 224.70 226.56 228.20 228.34 3.42 

MSRE: mean square root error 

Nash-Sutcliffe: Nash index 

Mean: Average 

SDp: standard deviation in each predicted series 

SDs: the standard deviation between the six steps for each algorithm 

The average and standard deviation of the observed series are 160.95 and 216.67, 
respectively. 
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Implementation of the ARX(1,1) model and the ARX-DKF model with 

recursive updating obtain similar results because the parameters of ARX 

are multiplied by flow values in time 𝑘, an operation that is executed in a 

matrix manner in the forecast equation of the DKF algorithm. The results 

presented refer only to the ARX-DKF model.  

For step 𝐿 =  1, the algorithms with the Kalman filter generate 

forecasts with Nash-Sutcliffe coefficients (NS) above 0.9855, which is 

slightly better than that found in the flow forecasts at the Ángel Albino 

Corzo dam (NS = 0.9774) (Morales-Velázquez et al., 2014). However, in 

the measure that step 𝐿 becomes larger, increasing differences appear 

between the algorithms. DKF remains with the best fit, followed by EnKF 

and ARX-DKF, and lastly by the integration DKF-EnKF, with a pronounced 

decrease to 0.7110 in step 𝐿 = 6 (Table 1). MSRE can be interpreted with 

units in 𝑚3 /𝑠, and has adjustment behavior similar to that evidenced by 

NS. Both NS and RMSE demonstrate that the smallest error is achieved 

by DKF, followed by EnKF, ARX-DKF, and DKF-EnKF. In terms of NS and 

RMSE, it can be seen that the DKF and EnKF algorithms generate forecasts 

with a better fit than the ARX-DKF model. Moreover, the use of DKF does 

not require long sections of series for training, meaning more model 

simplicity.  

According to the statistical summary in Table 2, the mean and 

standard deviation in the six steps tend to overestimate in different 

magnitudes, relative to the observed series. The most stable algorithm 

was that of EnKF, with a standard deviation of 0.38, slightly different from 
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that of DKF, which has a deviation of 0.45 between the six steps, while 

ARX-DKF and DKF-EnKF have higher standard deviations of 1. 03 and 

2.72, respectively. The dispersion represented by the standard deviation 

among the forecasted series (Dep) confirms that EnKF is more similar to 

the observed series in the six steps. The apparent better fit of the EnKF 

forecasts is due to the effect of displacement relative to the observed data 

with little change in the maximum or minimum peaks, in such a way that 

there were no notable effects on the mean or standard deviation.  

The differences among the generated forecasts become notable in 

graphic form, and for a detailed comparison, Figure 5 and Figure 6 present 

two floods at different steps. 
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Figure 5. Observed flows and flows forecasted with DKF, EnKF, and 

DKF-EnKF (flood 4/9/2017 16:00 h to 8/9/2017 20:00 h). 
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Figure 6. Observed flow and flow forecasted with DKF, EnKF, and DKF-

EnKF (Flood 23/09/17 10:00 h to 28/09/17 00:00 h). 
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The forecasts for time 𝑘 + 𝐿 displaced a value similar to 𝐿 because 

updating incorporates the last measurement corresponding to time 𝑘. In 

other words, with larger distances between the measured data set and 

the forecasted 𝑘 + 𝐿 moment, there is a progressive decrease in the fit 

between step 𝐿 = 1 and 𝐿 = 6, manifested as displacement of the predicted 

over the observed series. Nevertheless, for the event shown in Figure 6, 

with the forecasts generated by DKF and ARX, displacement is almost 

null. This is because the delay between the peak on September 25, 2017, 

at 18:00 at the Platanitos station, and the peak on September 26, 2017, 

at 02:00 at the Chapalagana station is eight hours. That is, DKF estimates 

and updates the Instantaneous Unit Hydrograph (IUH) based on flow 

registers from the Platanitos station at the current time (𝑘), which at the 

Chapalagana station appeared 8 hours later as a consequence of 

concentration time. The proximity of the delay magnitude and step 𝐿 = 6 

allows that updating can be done with correlated registers, decreasing 

displacement and conferring better fit at the maximum peak. ARX 

generates the forecast with a fit similar to that of DKF but with a longer 

series segment; that is, implementation of the DKF model is simpler.  

The EnKF and DKF-EnKF algorithms did not obtain improvements 

because EnKF makes scale estimations, and delay between series is not 

included. Unlike DKF, the forecast generated by DKF-EnKF is inverted in 

such a way as to generate a minimum peak (Hour 1311, 25/09/2017 

23:00) due to updating with the maximum flow peak presented at the 

Platanitos station (Hour 1306, 25/09/2017 18:00) that the EnKF 
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algorithm tries to correct. A possible adequation is the implementation of 

EnKF for estimating states instead of scales that can also add capacity for 

non-linear treatment, as well as integration of the Kalman Filter with 

distributed simulation models, as proposed by Rafieeinasab et al. (2014). 

Modeling in Kalman simplifies the parameters, which include the 

distributed model Sacramento Soil Moisturing Accounting (SAC), and 

finally compares its ensemble Kalman filters with the result of this model. 

The work of Rafieeinasab et al. (2014) is quite interesting from two 

standpoints: 1) The work compares two ensemble Kalman filters, the 

simple EnKF and that of maximum likelihood (MELF); 2) It considers an 

entire system that relates flow forecasting with soil moisture, which is 

seen as a balance that considers mean rainfall in the basin and a mean 

evaporation potential in the basin. Conceptually, our model is simpler 

because it only simulates data from measured flows. However, 

constructive criticism of the results is the following: their basin is smaller 

(435 km2) than ours (12 076 km2). The order of the size of their flows is 

small (100 to 200 m3/s), but their error (MSRE) is very high, possibly 

reaching 45 m3/s. In our study, the flows are in the order of 200 to 1 100 

m3/s. Nevertheless, the maximum MSRE is 116 m3/s in the worst case.  

Forecasts can achieve a better fit by dynamically incorporating time 

delay between series, treating variables with different types of 

observation and proportions (Meng et al., 2017), and incorporating 

variables that affect time delays, such as location and direction of 

precipitation events and prior soil moisture condition in the basin. 

Precipitation, atmospheric pressure, temperature, and relative humidity 
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are variables that can contribute to better fits in the forecast. Moreover, 

given that the flows measured in the upper part of the basin are 

proportionally smaller due to the smaller capture area, it is convenient to 

include parameters that help equate flow magnitudes in the model. Also, 

it is determinant to have registers from weather stations distributed 

throughout the area of the basin to define and update the response 

function of the basin (IUH) (González-Leiva et al., 2015). 

The dispersion between the observed series and the predicted series 

(Figure 7) shows algorithm similarity. In the measure that L increases, 

the value of the slope (in the linear equation, Figure 7) decreases; that 

is, in general, the predicted values are underestimated, relative to the 

observed value. 
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Figure 7. Observed vs. forecasted flows.  
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When 𝐿 = 1, the linear fit between observed and predicted values 

has a coefficient of determination of 0.99, which is higher and similar in 

the four algorithms (Table 2). From steps 𝐿 = 2 onward, dispersion 

increases due to the distancing of the data set used for the forecast. DKF 

maintains the best fit in the six steps, with notable similarity to EnKF up 

to 𝐿 = 3. When 𝐿 = 6, DKF has the coefficient of determination of 0.88, 

which is higher. The behavior of the linear fit is congruent with the NS 

value shown in Table 1. The points that are far away from the central line 

correspond to forecasts in which flow at the Chapalagana station 

undergoes brusque changes when conforming the flood. Said points 

generate forecasts with atypical magnitudes. At 𝑘 = 813 and 𝑘 = 814 hours, 

the highest deviations relative to the observed value occur, equivalent to 

the initial stage of flood conformation, which is shown in Figure 5.  

 

Table 2. Coefficients of determination of the observed flow against the 

forecasted flow.  

 L1 L2 L3 L4 L5 L6 

DKF 0.99 0.97 0.95 0.93 0.90 0.88 

EnKF 0.99 0.96 0.94 0.91 0.88 0.84 

DKF-EnKF 0.99 0.96 0.93 0.87 0.84 0.76 

ARX-DKF 0.99 0.96 0.93 0.90 0.87 0.84 
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To verify the normality of the generated residuals from the DKF, 

EnKF, and DKF-EnKF forecasts, Figure 8 shows the histogram and the fit 

of the normal curve for each algorithm in the different steps. It is 

important to consider that it is ideal that the residuals have a normal 

distribution, but this occurs in few cases. Therefore, an approximation is 

admitted (Chatfield, 2001). 
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Figure 8. Histogram of DKF residuals. 
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The symmetric distribution with higher forecast concentration in the 

central part can be seen. Of the total estimations in the range of -0.4 to 

0.4 of the standardized residuals, 𝐿 =  1 groups 86.03% to 87.3%, while 

𝐿 =  6 groups between 56.67 and 63.02%. Assuming that there is a near-

normal distribution in the residuals, standardization was done to 

determine the presence of atypical values, higher and lower than the 

standard deviations for 1 and 6 steps, resulting from the DKF, EnKF, and 

DKF-EnKF forecasts (Figure 9). The atypical values are located in the 

ascending and descending parts of the peaks and are shown as red dots 

in Figures 5 and 6. In accord with the statistical indexes of Table 1, in the 

measure that step 𝐿 becomes larger, atypical values appear more 

frequently. Step 𝐿 = 1 presents a similarity that becomes increasingly 

distorted until it reaches a range of 55 between DKF and DKF-EnKF in 

step 𝐿 = 6. 
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Figure 9. Standardized residuals. 
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The presence of atypical data is closely related to the level of fit. As 

shown in Table 3, DKF presents the lowest number of atypical values 

associated with the capacity for administrating the delays between the 

series (Table 1). In contrast, DKF-EnKF, except for step 𝐿 = 1, has a 

greater presence of atypical values due to the application of gain by DKF 

and, in sequence, by the EnKF, which amply projects the brusque changes 

inflow. Also, the smallest peak, shown in Figure 7, favors the occurrence 

of more atypical values.  

 

Table 3. The number of atypical values by algorithm and step.  

 L1 L2 L3 L4 L5 L6 

DKF 

13 41 63 84 96 112 

1.03 % 3.25 % 5.00 % 6.67 % 7.62 % 8.89 % 

EnKF 
15 41 70 99 112 143 

1.19 % 3.25 % 5.56 % 7.86 % 8.89 % 11.35 % 

DKF-EnKF 

14 46 66 105 132 167 

1.11 % 3.65 % 5.24 % 8.33 % 10.48 % 13.25 % 

ARX-DKF 

15 42 62 87 107 137 

1.19 % 3.33 % 4.92 % 6.90 % 8.49 % 10.87 % 
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Conclusions 

 

 

DKF achieves the best fit due to the estimation of states, which allows 

taking advantage of the delay between series as the basis for updating. 

EnKF estimates scale values and generates smoothing with a 

displacement effect that maintains the stability of the mean and the 

standard deviation but has a fit that is inferior to that of DKF. In this way, 

the use of DKF where time delay is incorporated recursively for updating 

can improve fit in the peaks. Moreover, the simplicity of programming and 

operating the DKF make it feasible for forecasting short-term flows. 

Forecasting hourly flows with all the Kalman filters analyzed is quite good 

with very high Nash-Sutcliffe coefficients and very low errors measured 

as MSRE.  

To improve the fit of the forecasts, it is important to conduct studies 

that include recursive updating of time delay between the series of 

different stations, taking into account that variations occur throughout the 

time. Also, forecasts can be evaluated with step sizes of several hours, 

for example, by grouping six hours using values such as the mean or the 

maximum so that each step is equivalent to six hours and a forecast at 
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six steps is equivalent to 36 hours. In this way, the model is more flexible, 

and the forecasting period can be lengthened.  
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