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Abstract 

In the center and south of the Mexican Republic, each year the hurricanes 

of the Caribbean Sea and the Pacific Ocean cause floods that lead to a 

wet season and that generally increase in magnitude and danger as the 

cyclone season progresses. Both conditions allow bivariate frequency 

analysis of their dates of occurrence and their maximum flows (Qm). In 
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this study, the bivariate distribution was formed based on the Gumbel-

Hougaard Copula function, which satisfies the observed dependency 

condition (λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶) and which combines the von Mises distributions as 

marginal distributions for the dates of occurrence in the year and for the 

Qm a suitable probabilistic function. The exposed theory is applied to the 

annual floods recorded at the Guamúchil gauging station of Hydrological 

Region No. 10 (Sinaloa), Mexico, in the period from 1940 to 1971. The 

von Mises distribution is fitted via numerical optimization with the de 

Rosenbrock algorithm and the ideal distribution of the Qm turned out to 

be the Kappa. The graph of joint return periods of the AND type of 50, 

100 and 500 years was formed. In addition, conditional joint return 

periods of occurrence dates were estimated given that the Qm has the 

cited return periods. This allows estimates of the probability of 

exceedance of Qm in defined periods. The conclusions highlight the 

simplicity of these bivariate frequency analyses, by means of the Copula 

functions, and the practical importance of their predictions, according to 

the dates of occurrence. 

Keywords: Dates of occurrence, von Mises distribution, Copula functions, 

Kendall's tau ratio, joint empirical probabilities, dependency on the 

extreme right, joint and conditional return periods. 

 

Resumen 

En el centro y sur de la república mexicana cada año los huracanes del 

mar Caribe y del océano Pacífico originan crecientes que definen una 

estación húmeda, y que en general aumentan en magnitud y peligrosidad 

conforme transcurre la temporada de ciclones. Ambas condiciones 
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permiten el análisis de frecuencias bivariado de sus fechas de ocurrencia 

y sus gastos máximos (Qm). En este estudio, la distribución conjunta se 

formó con base en la función Cópula de Gumbel-Hougaard, que satisface 

la condición de dependencia (λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶) observada y que combina como 

distribuciones marginales la de von Mises para las fechas de ocurrencia 

en el año y para los Qm una función probabilística idónea. La teoría 

expuesta se aplica a las crecientes anuales registradas en la estación de 

aforos Guamúchil de la Región Hidrológica No. 10 (Sinaloa), México, en el 

periodo de 1940 a 1971. La distribución de von Mises se ajusta vía 

optimización numérica con el algoritmo de Rosenbrock y la distribución 

idónea de los Qm fue la Kappa. Se formó la gráfica de periodos de retorno 

conjuntos de tipo AND de 50, 100 y 500 años. Además, se estimaron 

periodos de retorno conjuntos condicionales de fechas de ocurrencia, 

dado que el Qm tiene los periodos de retorno citados. Lo anterior permite 

estimaciones de la probabilidad de excedencia del Qm en lapsos definidos. 

Las conclusiones destacan la simplicidad de estos análisis de frecuencias 

bivariados por medio de las funciones Cópula y la importancia práctica de 

sus predicciones, según las fechas de ocurrencia. 

Palabras clave: fechas de ocurrencia, distribución de von Mises, 

funciones Cópula, cociente tau de Kendall, probabilidades empíricas 

conjuntas, dependencia en el extremo derecho, periodos de retorno 

conjuntos y condicionales. 
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Introduction 
 
 

Generalities 
 
 
In general terms, the risk of flooding and its damages are a direct function 

of the water volume that flows through the channel which exceeds its limit 

or capacity, overflowing and covering the floodplains. However, the 

occurrence date of the event is as important as its magnitude and in some 

cases greater, when they occur out of season or in the wet season, 

because it takes the population off guard, causing greater damage 

(Khedun, Singh, & Byrd, 2019). 

Due to the above, the estimation of the probability of flood 

occurrence throughout the year, is vital for the elaboration of plans that 

have no hydraulic works of damage mitigation, which include the 

preparation for the event, with the purpose of reducing the exposure and 

vulnerability of the population, as well as optimizing the economic 

resources available for the emergency and accelerating post-event 

recovery (Durrans, Eiffe, Thomas, & Goranflo, 2003; Khedun et al., 

2019). 

In general, understanding the seasonal behavior of floods is vital in 

the planning and management of the river's hydraulic resources, both for 

agricultural and hydroelectric uses, as well as for navigation, recreational 

uses, and other activities associated with waterbodies. Therefore, 

knowing the relationship between the maximum flow and its date of 
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occurrence becomes extremely important, to the point of requiring its 

joint bivariate study (Chen, Guo, Yan, Liu, & Fang, 2010). 

Bivariate flood frequency analysis began formally at the beginning 

of this century (Yue & Rasmussen, 2002) and was generally based on 

maximum flow and of annual flood volume, using the bivariate Normal 

distribution and the Logistic model which accepts as probability 

distribution functions (FDP, by its acronym in Spanish) equal marginals to 

the extreme value distributions, the most common being the Gumbel and 

the GVE (Escalante-Sandoval & Reyes-Chávez, 2002; Aldama, Ramírez, 

Aparicio, Mejía-Zermeño, & Ortega-Gil, 2006). 

Bivariate flood analysis is the simplest multivariate approach, and 

yet it involves five mathematical complications: (1) a bivariate FDP must 

be used; (2) its validation requires the estimation of bivariate empirical 

probabilities; (3) now there are joint and conditional probabilities; (4) a 

joint return period must be defined, for which there are infinite pairs of 

values of X and Y that can satisfy it and (5) the critical or design events 

must be selected among the aforementioned pairs (Ramírez-Orozco & 

Aldama, 2000; Escalante-Sandoval & Reyes-Chávez, 2002; Volpi & Fiori, 

2012; Requena, Mediero, & Garrote, 2013). 

Currently, with the use of the mathematical tool known as 

"Copulas", the bivariate FDPs can be constructed with marginals of 

different types, given the fact that copula functions allow multivariate 

distributions to be represented from univariate or marginal FDPs, 

regardless of their shape or form type (Salvadori, De Michele, Kottegoda, 

& Rosso, 2007; Meylan, Favre, & Musy, 2012; Genest & Chebana, 2017; 

Zhang & Singh, 2019; Chowdhary & Singh, 2019). 
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By means of the Copula functions, the bivariate frequency analysis 

of the annual flood occurrence dates and their maximum flows is 

addressed. The former are represented by the von Mises distribution and 

the latter by a suitable PDF. 

 
 

Objectives 
 
 
The objectives of this study can be encompassed by the following six: (1) 

the directional statistics that represent the flood occurrence dates during 

the year are exposed; (2) the von Mises distribution (dvM, by its acronym 

in Spanish) and its adjustment via numerical optimization are described, 

which allows the probabilistic characterization of the dates of occurrence; 

(3) the basic characteristics of the Frank and Gumbel-Hougaard copula 

functions (FC, by its acronym in Spanish) are presented, including: 

Kendall's tau ratio, observed and FC dependence, estimation of joint 

empirical probabilities, and selection and ratification of the FC; (4) the 

selection and adoption of the ideal marginal FDP of the maximum annual 

flows is exposed; (5) the joint return periods of the OR, AND and 

conditional type are described and (6) as a numerical example, the 

application of the theory and procedures exposed to the 32 annual floods 

registered in the Guamuchil hydrometric station of the Hydrological 

Region No. 10 (Sinaloa), Mexico, is detailed. 
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Operative theory 
 
 

Circular data and directional indicators 
 
 
The dates of occurrence of the annual floods in Mexico, generally define 

a wet season that covers from June to October, which is the season of 

hurricane incidence that are generated in the Caribbean Sea and in the 

Pacific Ocean. Therefore, the dates of of the annual flood occurrence can 

be represented within a circle, which covers the 365 days of the year. 

There are several conventions or ways of working in the circle, to 

graph the data (Ramírez-Orozco, Gutiérrez-López, & Ruiz-Silva, 2009). 

From now on, the Burn convention (Burn, 1997) will be used, due to its 

similarity with Cartesian quadrants. In such a scheme, the advance is 

counterclockwise, starting on the abscissa axis; for this reason, January 

1 and December 31 coincide in such beginning. 

Having several circular data drawn, it is possible to obtain its 

directional indicators, the most important are two, its mean direction (𝛼𝛼) 

and its seasonality index (𝑟𝑟). The first defines the central tendency of the 

data and, therefore, is the average occurrence date of the annual floods 

and the second quantifies the dispersion of such values (Campos-Aranda, 

2017). 
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Average address and seasonality index 
 
 
To estimate these indicators, one begins by transforming each date of 

occurrence of the annual floods to a Julian day (Di), that is, from 0 to 365; 

This implies not taking leap years into account. If a flood occurs on 

February 29, it is assigned the 28th. January dates remain the same, but 

February 31 is added, March 59, April 90, and so on until February. 

November which is added 304 and those of December are added 334, to 

obtain the Julian day. Next, the angle 𝛼𝛼𝑖𝑖 in radians corresponding to the 

date i of each flood (Di) is obtained, with the following expression (Burn, 

1997; Cunderlik, Ouarda, & Bobée, 2004; Chen, Singh, Guo, Fang, & Liu, 

2013; Campos-Aranda, 2023b): 

 

𝛼𝛼𝑖𝑖 = 2𝜋𝜋 𝐷𝐷𝑖𝑖
365

= 𝑋𝑋𝑖𝑖   with 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 2𝜋𝜋 (1) 

 

in which 

𝜋𝜋 = number pi with 3.141592654 as an approximate value 

Xi = random variable of the dates of occurrence, in radians 

Next, the x and y coordinates of the flood occurrence dates 

described by the angles 𝛼𝛼𝑖𝑖 are estimated based on the cosines and sines 

and their average values are obtained through the following equations: 

 

𝑥𝑥 = 1
𝑛𝑛
∑ cos𝑛𝑛
𝑖𝑖=1 (𝛼𝛼𝑖𝑖) (2) 
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𝑦𝑦 = 1
𝑛𝑛
∑ sen𝑛𝑛
𝑖𝑖=1 (𝛼𝛼𝑖𝑖) (3) 

 

where 

n = number of dates of occurrence of the annual floods analyzed 

Now, the mean direction (𝛼𝛼) of the average date of the floods will 

be: 

 

𝛼𝛼 = arc𝑡𝑡𝑡𝑡𝑡𝑡 �𝑦𝑦
𝑥𝑥
� (4) 

 

The application of the previous equation is done by first obtaining 

the arc tangent of 𝑦𝑦 between 𝑥𝑥, both with a positive sign designated 𝛼𝛼, in 

radians; then if 𝑥𝑥 and 𝑦𝑦 are positive 𝛼𝛼 = 𝛼𝛼, if 𝑥𝑥 < 0 and 𝑦𝑦 > 0 𝛼𝛼 = 𝜇𝜇 − 𝛼𝛼, if 

both are negative 𝛼𝛼 = 𝜋𝜋 + 𝛼𝛼 and finally, if 𝑥𝑥 > 0 and 𝑦𝑦 < 0 𝛼𝛼 = 2𝜋𝜋 − 𝛼𝛼. The 

angles 𝛼𝛼𝑖𝑖 and 𝛼𝛼 are converted to degrees (0º to 360º) by multiplying them 

by 57.295755. 

The value of 𝛼𝛼 in Julian days is called mean flood day (DMC, by its 

acronym in Spanish), it is obtained by dividing by 2𝜋𝜋 and multiplying by 

365. The DMC index indicates the average occurrence date of the 

maximum annual flows in a given basin. Basins with similar DMC values 

can be expected to show similarities in other important hydrological 

characteristics. Logically, the DMC will be related to the size of the basin 

and its geographical location within the studied hydrological region (Burn, 

1997; Cunderlik et al., 2004). 
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A measure of the variability of the n dates of occurrence of the 

floods, in relation to the DMC, can be estimated by calculating the 

resulting average, which is expressed as: 

 

𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 (5) 

 

The seasonality index 𝑟𝑟 is a dimensionless measure of the data 

dispersion, it takes values between zero and one. A unit value indicates 

that all the floods occur on the same date, while a value close to zero 

implies great variability of occurrences throughout the year. 

Ramirez-Orozco et al. (2009) establish the following five degrees of 

seasonality: (1) very strong, when 𝑟𝑟 > 0.90, (2) strong, when 𝑟𝑟 fluctuates 

between 0.70 and 0.90, (3) medium, when 𝑟𝑟 varies from 0.50 to 0.70, 

(4) low, when 𝑟𝑟 changes from 0.10 to 0.50 and (5) very low or weak, 

when 𝑟𝑟 < 0.10. Chen et al. (2013) indicate that if 𝑟𝑟 is close to unity, a 

single season or wet season can be expected to be dominant. 

 
 

The von Mises distribution 
 
 
This probabilistic model is commonly used to represent random variables 

that have two-dimensional direction and a single mode. For this reason, 

the von Mises distribution (dvM, by its acronym in Spanish) is considered 

the natural analogy of the Normal model for seasonal data. Its probability 
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density function is the following equation (Metcalfe, 1997; Carta, Bueno, 

& Ramirez, 2008; Chen et al., 2010): 

 

𝑓𝑓(𝑥𝑥) = exp [𝜅𝜅∙cos(𝑥𝑥−𝜇𝜇)]
2𝜋𝜋𝐼𝐼0(𝜅𝜅)

  with 0 ≤ 𝑥𝑥 ≤ 2𝜋𝜋, 0 < 𝜇𝜇 ≤ 2𝜋𝜋, 𝜅𝜅 > 0 (6) 

 

The dvM is symmetric with its mode at x = µ, which is also its mean 

direction (𝛼𝛼) and the dispersion is given by the concentration parameter 

κ (kappa). The denominator of Equation (6) makes the area under the 

curve unitary and for this reason it is called the normalization factor (FN, 

by its acronym in Spanish); includes the modified Bessel function of the 

first type of order zero [I0(κ)]. 

To estimate the non-exceedance probability of a value x, Equation 

(6) is numerically integrated, that is: 

 

𝐹𝐹(𝑥𝑥) = 1
2𝜋𝜋𝐼𝐼0(𝜅𝜅)∫ exp[𝜅𝜅 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥 − 𝜇𝜇)]𝑥𝑥

0  (7) 

 

The previous expression defines the PDF of the dvM. I0(κ) is 

estimated with the following ascending series, which comes from Olver 

(1972): 

 

𝐼𝐼0(𝜅𝜅) = 1 + �𝜅𝜅�2 4⁄ �
1

+ �𝜅𝜅2 4⁄ �
2

4
+ �𝜅𝜅2 4⁄ �

3

36
+ �𝜅𝜅2 4⁄ �

4

576
+ �𝜅𝜅2 4⁄ �

5

14400
+ ⋯ (8) 
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Numerical integration of the dvM 
 
 
To carry out such numerical integration of Equation (7), the Gauss-

Legendre quadrature method was adopted, whose univariate operational 

equation is (Nieves & Domínguez, 1998; Campos-Aranda, 2003): 

 

∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 ≅𝑏𝑏
𝑎𝑎

𝑏𝑏−𝑎𝑎
2
∑ 𝑤𝑤𝑖𝑖 ∙ 𝑓𝑓 �

(𝑏𝑏−𝑎𝑎)ℎ𝑖𝑖+𝑏𝑏+𝑎𝑎
2

�𝑛𝑛𝑛𝑛
𝑖𝑖=1  (9) 

 

in which 

wi = coefficients of the method whose abscissas are hi 

np = number of pairs in which the function f(x) is evaluated, with the 

argument indicated in f(∙) of Equation (9). 

In Davis and Polonsky (1972) the 12 used pairs of wi and hi with 15 

digits were obtained, because the Basic language accepts 16 digits as 

double precision variables. 

 
 

Fit of the dvM in the wet season 
 
 
When the annual flood occurrence dates cover, for the most part, a quite 

defined period in months, for example, from June to October, then the 

application of Equation (7) is carried out via numerical optimization, to 

find the values of µ and κ that reduce the sum of the differences between 

theoretical probabilities [FT(x)] and empirical probabilities [FE(x)] to the 

square, that is: 
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Minimize FO = ∑ [𝐹𝐹𝑇𝑇(𝑥𝑥) − 𝐹𝐹𝐸𝐸(𝑥𝑥)]2𝑛𝑛
𝑖𝑖=1  (10) 

 

The minimization of the previous objective function will be carried 

out by means of the Rosenbrock algorithm. The empirical probabilities are 

defined with the Gringorten formula (Chen et al., 2010), which is: 

 

𝐹𝐹𝐸𝐸(𝑥𝑥) = 𝑚𝑚−0.44
𝑛𝑛+0.12

 

 (11) 

 

where 

m = order number of the data or occurrence date in radians (𝑥𝑥 = 𝛼𝛼𝑖𝑖), when 

they are located in progressive magnitude 

n = total number of data 

Logically, the occurrence dates outside the main period or wet 

season of the floods are previously eliminated, to improve the fit and, 

therefore, the definition of the dvM. More details of the previous process 

can be consulted in Campos-Aranda (2023b). 

 
 

Rosenbrock algorithm 
 
 
It is a numerical direct search procedure that attempts to define the 

minimum of a nonlinear function of multiple unbounded random variables. 

Rosenbrock's algorithm assumes that the function is unimodal and begins 
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by defining a straight line, or search direction, from a given starting point. 

Next, it evaluates the objective function (FO) at various points on the line 

and determines the optimum; when this has happened, a new search 

direction is selected and the process is repeated recursively in stages. 

In this algorithm it is convenient to provide different starting points 

to search for the global minimum, based on the estimated local minima. 

A more detailed description of the process can be found in Rosenbrock 

(1960), Kuester and Mize (1973), and Campos-Aranda (2003). 

 
 

Advantages of Copula Functions 
 
 
As already indicated, the essential advantage of Copula Functions (FC, by 

its acronym in Spanish) consists in allowing to express a joint distribution 

of correlated random variables, as a function of their marginal 

distributions, previously adopted. So, a FC links or relates the univariate 

marginal distributions to form a multivariate distribution. Another basic 

advantage of FCs when forming multivariate distributions is the fact that 

they separate the effect of dependence between random variables from 

the effects of marginal distributions in joint modelling. 

Due to the above, the construction of the multivariate distribution 

is reduced to the study of the relationship between the correlated 

variables, if the univariate marginal distributions are known. The use of 

FCs offers complete freedom to adopt or select the univariate marginal 

distributions that best represent the data (Meylan et al., 2012; Zhang & 

Singh, 2019; Chowdhary & Singh, 2019). 
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Copula families to apply 
 
 
The Copula functions (FC, by its acronym in Spanish) that have been 

developed have been classified into four classes: Archimedean, extreme 

value, elliptic, and miscellaneous. They are also classified into one-

parameter or multi-parameter copulas, depending on the amplitude with 

which the structure of the dependency between the variables X and Y is 

defined (Meylan et al., 2012; Chowdhary & Singh, 2019). Salvadori et al. 

(2007) present a comprehensive and useful summary of FC that have 

been applied in the field of hydrology. 

Designating FX(x) = u, FY(y) = v and θ the parameter that measures 

the dependence or association between u and v, we have the following 

two families of Archimedean copulas and extreme values (Salvadori et al., 

2007; Zhang & Singh, 2019; Chen & Guo, 2019; Chowdhary & Singh, 

2019). 

1. Frank. Its equation and variation space of θ are: 

 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = −1
𝜃𝜃

ln �1 + �𝑒𝑒−𝜃𝜃𝜃𝜃−1��𝑒𝑒−𝜃𝜃𝜃𝜃−1�
𝑒𝑒−𝜃𝜃−1

�   (−∞,∞) ∖ {0} (12) 

 

For the negative dependence 0≤θ<1 and for the positive one θ>1, with θ 

= 1 for the independence between u and v. The relationship of θ with 𝜏𝜏𝑛𝑛 

is the following: 
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𝜏𝜏𝑛𝑛 = 1 + 4
𝜃𝜃

[D1(𝜃𝜃) − 1] (13) 

 

where D1(θ) is the Debye function of order 1, expressed as: 

 

𝐷𝐷1(𝜃𝜃) = 1
𝜃𝜃 ∫

𝑠𝑠
𝑒𝑒𝑠𝑠−1

𝑑𝑑𝑑𝑑𝜃𝜃
0  (14) 

 

The previous equation was estimated with numerical integration, 

ratifying its results with the values tabulated by Stegun (1972). 

2. Gumbel-Hougaard, which accepts only positive dependence. 

Its equation and variation space of θ are: 

 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = exp �−�(− ln𝑢𝑢)𝜃𝜃 + (− ln 𝑣𝑣)𝜃𝜃�
1/𝜃𝜃

�   [1,∞) (15) 

 

With θ = 1 there is independence between u and v. The relationship 

of θ to Kendall's tau ratio is as follows: 

 

𝜏𝜏𝑛𝑛 = 𝜃𝜃−1
𝜃𝜃

 (16) 
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Association measures 
 
 

Concordance 
 
 
Since the FC characterizes the dependency between the random variables 

u and v, it is necessary to study the association measures, in order to 

have a method that allows estimating its parameter θ. In general terms, 

a random variable is concordant with another, when its large values are 

associated with the large values of the other and the small values of one 

with the small values of the other (Salvadori et al., 2007; Chowdhary & 

Singh, 2019). 

Some variables with direct linear correlation will be concordant, 

since as one increases the other does too. Variables with inverse linear 

correlation will be discordant, since large values of one will correspond to 

small values of the other. This implies that the pairs (x1-x2)(y1-y2)>0 are 

concordant (c) and discordant (d) when (x1-x2)(y1-y2)<0 (Salvadori et al., 

2007; Chowdhary & Singh, 2019). 

A numerical measure of association is a statistic that indicates the 

degree of dependence or variable association. For comparison purposes, 

such measures range from zero to +1 or to -1, indicating perfect 

association positive at +1 or negative at -1. Kendall's tau ratio and 

Spearman's rho coefficient are two non-parametric measures that provide 

information about a special form of association or dependency, known as 

concordance (Salvadori et al., 2007; Chen & Guo, 2019). 
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Kendall's tau ratio 
 
 
It measures the probability of having matching pairs, which is why it is 

the quotient of c-d between c+d. The expression to estimate it with 

bivariate data is (Zhang & Singh, 2006; Zhang & Singh, 2019): 

 

𝜏𝜏𝑛𝑛 = 2
𝑛𝑛(𝑛𝑛−1)

∑ ∑ sign��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗��𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1
𝑖𝑖=1  (17) 

 

In the above equation: 

n = number of observations 

sign[∙] = +1 if such pairs are concordant and -1 if they are discordant 

Genest and Favre (2007) present a test for the tau quotient, 

adopting H0 as the null hypothesis that X and Y are independent and then 

the statistic has an approximately Normal distribution with mean zero and 

variance 2(2n+5)/[9n(n-1)]. Then, H0 will be rejected with a confidence 

level α = 5 % if: 

 

�9𝑛𝑛(𝑛𝑛−1)
2(2𝑛𝑛+5)

|𝜏𝜏𝑛𝑛| > 𝑍𝑍𝛼𝛼 2⁄ = 1.96 (18) 
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Dependency parameter estimation 
 
 
The simplest method to estimate the parameter θ of the FCs is similar to 

the method of moments and is based on the inversion of the equation 

that relates θ to the Kendall tau ratio or to Spearman's rho coefficient 

(Meylan et al., 2012; Chowdhary & Singh, 2019; Zhang & Singh, 2019; 

Chen & Guo, 2019). To obtain θ, in Equation (13) we proceed by trial and 

error; on the other hand, in Equation (16) its value is cleared. 

 
 

Estimation of joint empirical probabilities 
 
 
The bivariate empirical probabilities were estimated based on the 

Gringorten formula, applied by Yue (2000b), Zhang and Singh (2019), 

and Chen and Guo (2019). Such a formula is: 

 

𝑝𝑝 = 𝑖𝑖−0.44
𝑛𝑛+0.12

 (19) 

 

in which: 

i = number of each piece of data, when they are ordered progressively 

n = total number of them, or the width of the processed record 

The previous expression was applied in the two-dimensional plane, 

with the data ordered progressively; the dates of occurrence (Xi) in the 

rows and the maximum flows (Qi) in the columns. The plane formed is a 

square of n by n cells, with n cells on its main diagonal, when the order 
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number of the row is equal to that of the column. Then, each pair of 

annual data (Xi and Qi) is located in the two-dimensional plane and the 

cell defined by the intersection of the row and column is identified with 

the number i that corresponds to the historical year drawn. 

When the n data pairs are drawn, year 1 is searched for and a 

rectangular or square area of minor X and Q values is defined, whose 

count of numbered cells within is NM1 or minor X and Y combinations. 

Once the n values of NMi have been calculated, Gringorten's graphical 

position formula is applied to estimate the joint or bivariate empirical 

probability: 

 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥,𝑄𝑄 ≤ 𝑞𝑞) = 𝑁𝑁𝑁𝑁𝑖𝑖−0.44
𝑛𝑛+0.12

 (20) 

 
 

Selection of the Copula Function 
 
 
A simple approach to selecting the bivariate Copula function is based on 

the fit error statistics, by comparing the observed empirical probabilities 

(𝑤𝑤𝑖𝑖𝑜𝑜) with the calculated theoretical ones (𝑤𝑤𝑖𝑖𝑐𝑐) with the FC being tested. 

The indicators applied are the standard mean error (EME), the absolute 

mean error (EMA) and the maximum absolute error (EAM); their 

expressions are (Chowdhary & Singh, 2019): 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = �1
𝑛𝑛
∑ �𝑤𝑤𝑖𝑖𝑜𝑜 − 𝑤𝑤𝑖𝑖𝑐𝑐�

2𝑛𝑛
𝑖𝑖=1  (21) 
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𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝑛𝑛
∑ |(𝑤𝑤𝑖𝑖𝑜𝑜 − 𝑤𝑤𝑖𝑖𝑐𝑐)|𝑛𝑛
𝑖𝑖=1  (22) 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1:𝑛𝑛

|(𝑤𝑤𝑖𝑖𝑜𝑜 − 𝑤𝑤𝑖𝑖𝑐𝑐)| (23) 

 
 

Dependency at the top end 
 
 

Generalities 
 
 
The most important criterion applied to select a bivariate FC is based on 

the magnitude of the dependence at the upper end of the joint 

distribution, which has an impact on the veracity of the extreme 

predictions. The upper-right-tail dependency (λ𝑈𝑈) is the conditional 

probability that Q is greater than a certain percentile(s) of FQ(q), given 

that X is greater than that percentile in FX(x); as s approaches unity. The 

dependence on the lower-left-tail (λ𝐿𝐿), compares Q to be less than X, when 

s approaches zero (Chowdhary & Singh, 2019; Salvadori et al., 2007). 

In relation to the exposed FCs, Frank Copulas have no tail 

dependencies. In contrast, the Gumbel-Hougaard copula has significant 

upper-tail dependency, equal to: 

 

λ𝑈𝑈 = 2 − 21 𝜃𝜃⁄  (24) 

 

Dupuis (2007) tested six Copula families and found that their ability 

to estimate extreme events ranges from poor to good, in the following 
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order: Clayton, Frank, Normal, t-Student, Gumbel-Hougaard, and 

Asociated Clayton (Survival Clayton). Poulin, Huard, Favre and Pugin 

(2007) reached similar conclusions, when comparing the same six families 

of copulas and the so-called A12, which has significant right tail 

dependency. 

 
 

Estimation of the observed dependency 
 
 
In order to approach the estimation of the dependence in the upper tail 

(λU) shown by the available data, the so-called Empirical Copula must first 

be defined. Since the FC characterizes the dependence between the 

random variables X and Q, then the pair of ranks Ri and Si coming from 

such variables is the statistic that retains the greatest amount of 

information and its scaling with the factor 1/(n+1) generates a series of 

points in the unit square [0,1]2, forming the domain of the Empirical 

Copula (Chowdhary & Singh, 2019), defined as follows: 

 

𝐶𝐶𝑛𝑛(𝑢𝑢, 𝑣𝑣) = 1
𝑛𝑛
∑ 1 � 𝑅𝑅𝑖𝑖

𝑛𝑛+1
≤ 𝑢𝑢, 𝑆𝑆𝑖𝑖

𝑛𝑛+1
≤ 𝑣𝑣�𝑛𝑛

𝑖𝑖=1  (25) 

 

In the above equation, 1(∙) indicates a function of the random 

variables U and V, which are a continuously increasing transformation of 

X and Y, related to the empirical probability integrals Fn(X) and Fn(Y), with 

the following equations: 
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𝑈𝑈𝑖𝑖 = Rank(𝑋𝑋𝑖𝑖)
𝑛𝑛+1

= 𝐹𝐹𝑛𝑛(𝑥𝑥𝑖𝑖)   𝑉𝑉𝑖𝑖 = Rank(𝑄𝑄𝑖𝑖)
𝑛𝑛+1

= 𝐹𝐹𝑛𝑛(𝑞𝑞𝑖𝑖) (26) 

 

Poulin et al. (2007) use the estimator proposed by Frahm, Junker 

and Schmidt (2005), which is based on a random sample obtained from 

the empirical copula, its expression is: 

 

λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 = 2 − 2exp �1
𝑛𝑛
∑ ln ��ln 1

𝑈𝑈𝑖𝑖
∙ln 1

𝑉𝑉𝑖𝑖
ln� � 1

max(𝑈𝑈𝑖𝑖,𝑉𝑉𝑖𝑖)2
��𝑛𝑛

𝑖𝑖=1 � (27) 

 

This estimator accepts that the FC can be approximated by one of 

the extreme values class, it has the advantage of not requiring a threshold 

value for its estimation. 

 
 

Ratification of the selected Copula function 
 
 
This is the most important stage of the FC application process, since it is 

verified that such model faithfully reproduces the observed joint 

probabilities (Equation (20)). Yue (2000a) describes a simple and 

practical way of representing the empirical and theoretical joint 

probabilities. It consists of taking the first one to the abscissa axis and 

the second one to the ordinate axis; in such a graph, each data pair 

defines a point that coincides with or departs from the 45º line. The 

inspection of the graph described and the value of the correlation 

coefficient ―in these cases, greater than 0.98― ratify the validity of the 

joint probabilistic model. 
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Yue (2000b), and Yue and Rasmussen (2002) apply the 

Kolmogorov-Smirnov test with a significance level (α) of 5 %, to accept 

or reject the absolute maximum difference (dma, by its acronym in 

Spanish) between the joint probabilities. To evaluate the statistic (Dn) of 

the test, the expression that Meylan et al. (2012), for α = 5 % this is: 

 

𝐷𝐷𝑛𝑛 = 1.358
√𝑛𝑛

 (28) 

 

n is the number of data. If the dma is less than Dn, the adopted FC 

is ratified. 

 
 

Selection of marginal distributions 
 
 
The approach for selecting the marginal distributions was very simple and 

consisted of applying the three FDPs that have been established as 

reference or applicable under precept, which are the Log-Pearson type III 

(LP3), the General Extreme Values (GVE) and Generalized Logistics 

(LOG). In addition, three widely used models were applied: the 

Generalized Pareto (PAG), the Kappa and the Wakeby. The first four 

mentioned FDPs have three fit parameters and the last two, four and five. 

With the exception of the LP3 that was applied with the method of 

moments in the logarithmic (WRC, 1977) and real (Bobée, 1975) 

domains, the rest were adjusted with the method of L moments (Hosking 

& Wallis, 1997). 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

The selection of the most convenient FDP was based on the value 

that each one generates with a probability of non-exceedance of 1 %; 

that is, a very low value that does not exceed the minimum observed 

values, to avoid negative marginal probabilities (v). This selection 

criterion is required in records of maximum flow Q that present very low 

minimum values, compared to their maximum extremes. 

In addition, the standard fit errors (EEA) and absolute mean (EAM) 

were taken into account, as well as the magnitude of the predictions in 

the return periods greater than 500 years. 

 
 

Fitting errors 
 
 
The first criterion applied for the selection of the best FDP to some 

available data or series, were the so-called adjustment errors (Kite, 1977; 

Willmott & Matsuura, 2005; Chai & Draxler, 2014). This criterion and the 

one described to avoid negative probabilities will allow adopting an 

adequate distribution between the models: LP3, GVE, LOG, PAG, Kappa 

and Wakeby. 

By changing in equations (20) and (21), the probabilities observed 

by the ordered data of the analyzed series (xi or yi) and the probabilities 

calculated by the estimated values with the FDP that is tested or 

contrasted, the standard error of fit (EEA) and the mean absolute error 

(EAM) are obtained. The values that are estimated (𝑥𝑥𝑖𝑖 or 𝑦𝑦𝑖𝑖) are sought 

for the same probability of non-exceedance assigned to the data with the 

empirical Gringorten formula (Equation (19)). 
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Bivariate return periods 
 
 
The first bivariate return period of the event (X, Y) is defined under the 

OR condition, which indicates that the limits x or y, or both can be 

exceeded and then, the classical equation of the return period or inverse 

of the exceedance probability will be (Shiau, Wang, & Tsai, 2006; Genest 

& Chebana, 2017): 

 

𝑇𝑇𝑋𝑋𝑋𝑋 = 1
𝑃𝑃(𝑋𝑋>𝑥𝑥∨𝑌𝑌>𝑦𝑦) = 1

1−𝐹𝐹𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦) = 1
1−𝐶𝐶[𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦)] (29) 

 

in which C[FX(x),FY(y)] is the selected FC. 

The second bivariate return period of the event (X, Y) is associated 

to the case in which both limits are exceeded (X>x,Y>y) or AND condition, 

its equation is (Shiau et al., 2006; Genest & Chebana , 2017): 

 

𝑇𝑇𝑋𝑋𝑋𝑋′ = 1
𝑃𝑃(𝑋𝑋>𝑥𝑥∧𝑌𝑌>𝑦𝑦) = 1

𝐹𝐹𝑋𝑋,𝑌𝑌
′ (𝑥𝑥,𝑦𝑦) = 1

1−𝐹𝐹𝑋𝑋(𝑥𝑥)−𝐹𝐹𝑌𝑌(𝑦𝑦)+𝐶𝐶[𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦)] (30) 

 

Aldama (2000) obtains the expression 𝐹𝐹𝑋𝑋𝑋𝑋′ (𝑥𝑥,𝑦𝑦) of the bivariate 

probability of exceedance by means of a logical and simple probability 

reasoning applied in the Cartesian plane. Instead, Yue and Rasmussen 

(2002) resort to the Cartesian plane to define the bivariate event (X, Y) 

conceptually, which can occur in any of the four quadrants. 
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The relationship between bivariate and univariate return periods is 

as follows (Yue & Rasmussen, 2002; Shiau et al., 2006; Vogel & 

Castellarin, 2017): 

 

𝑇𝑇𝑋𝑋𝑋𝑋 ≤ min[𝑇𝑇𝑋𝑋,𝑇𝑇𝑌𝑌] ≤ max[𝑇𝑇𝑋𝑋,𝑇𝑇𝑌𝑌] ≤ 𝑇𝑇′𝑋𝑋𝑋𝑋 (31) 

 

being: 

 

𝑇𝑇𝑋𝑋 = 1
𝐹𝐹𝑋𝑋
′ (𝑥𝑥) = 1

1−𝐹𝐹𝑋𝑋(𝑥𝑥) (32) 

 

𝑇𝑇𝑌𝑌 = 1
𝐹𝐹𝑌𝑌
′(𝑦𝑦) = 1

1−𝐹𝐹𝑌𝑌(𝑦𝑦) (33) 

 

The conditional bivariate return periods are based on the conditional 

distribution of X given that Y≤y, which is expressed as follows (Chen & 

Guo, 2019): 

 

𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥|𝑌𝑌 ≤ 𝑦𝑦) = 𝐶𝐶(𝐹𝐹𝑋𝑋(𝑥𝑥)|𝐹𝐹𝑌𝑌(𝑦𝑦) ≤ 𝑦𝑦) = 𝐶𝐶[𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦)]
𝐹𝐹𝑌𝑌(𝑦𝑦)  (34) 

 

A similar equation is obtained for Y given that X≤x. By similarity 

with the previous equation and Equation (30), the conditional distribution 

can be obtained for variables X and Y exceeding some limits (Chen & Guo, 

2019), this is: 
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𝑃𝑃(𝑋𝑋 > 𝑥𝑥|𝑌𝑌 > 𝑦𝑦) = 𝑃𝑃(𝑋𝑋>𝑥𝑥,𝑌𝑌>𝑦𝑦)
𝑃𝑃(𝑌𝑌>𝑦𝑦) = 1−𝐹𝐹𝑋𝑋(𝑥𝑥)−𝐹𝐹𝑌𝑌(𝑦𝑦)+𝐶𝐶[𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦)]

1−𝐹𝐹𝑌𝑌(𝑦𝑦)  (35) 

 
 

Data for processing 
 
 
In this study, the record of the Guamúchil hydrometric station, from 

Hydrological Region No. 10 (Sinaloa), Mexico, was processed. The 

Guamúchil gauging station has a basin area of 1 645 km2 and a 32-year 

record that began in 1940 and ended in 1971, when the Eustaquio Buelna 

dam was built (Aldama et al., 2006). In this record, three years were 

eliminated: (1) 1949 whose flow of 375 m3/s occurred on January 22; (2) 

1960 with a rate of 1 373 m3/s occurred on January 13, and (3) 1968 with 

a rate of 200 m3/s that occurred on February 10. The record of the 

adopted wet season is shown in Table 1, in its columns 1 to 6. 

 
Table 1. Flows of annual floods, dates of occurrence, theoretical and 

empirical non-exceedance probabilities and count for joint empirical 

probability at the Guamúchil hydrometric station in Hydrological Region 

No. 10 (Sinaloa), Mexico. 

1 2 3 4 5 6 7 8 9 10 

No. 
Qi 

(m3/s) 
Mes Día DJ 

𝛼𝛼𝑖𝑖 (radians) FT(x) 

ord 

FE(x) 

ord 
NMi 

obs ord 

1 255 AUG 4 216 3.718269 3.0641 0.041 0.019 3 

2 65 SEP 22 265 4.561765 3.2879 0.086 0.054 1 
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1 2 3 4 5 6 7 8 9 10 

No. 
Qi 

(m3/s) 
Mes Día DJ 

𝛼𝛼𝑖𝑖 (radians) FT(x) 

ord 

FE(x) 

ord 
NMi 

obs ord 

3 445 OCT 2 275 4.733907 3.5117 0.165 0.088 12 

4 1550 SEP 26 269 4.630622 3.5633 0.189 0.122 24 

5 392 AUG 30 242 4.165838 3.5806 0.198 0.157 8 

6 916 OCT 8 281 4.837192 3.5806 0.198 0.191 22 

7 241 AUG 10 222 3.821554 3.6666 0.244 0.225 3 

8 530 AUG 12 224 3.855983 3.6838 0.254 0.260 9 

9 648 JUL 23 204 3.511698 3.7183 0.275 0.294 3 

10 272 AUG 16 228 3.924839 3.7355 0.285 0.328 5 

11 422 SEP 7 250 4.303552 3.8216 0.342 0.363 9 

12 377 AUG 5 217 3.735483 3.8560 0.366 0.397 4 

13 1173 SEP 17 260 4.475694 3.9076 0.402 0.431 21 

14 219 JUL 10 191 3.287913 3.9248 0.415 0.466 2 

15 3507 SEP 23 266 4.578979 3.9593 0.440 0.500 25 

16 165 JUN 27 178 3.064129 4.0281 0.491 0.534 1 

17 526 AUG 18 230 3.959268 4.0970 0.543 0.569 10 

18 1014 SEP 20 263 4.527337 4.1658 0.593 0.603 20 

19 1610 AUG 2 214 3.683840 4.3036 0.689 0.637 8 

20 525 AUG 1 213 3.666626 4.3380 0.711 0.672 5 
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1 2 3 4 5 6 7 8 9 10 

No. 
Qi 

(m3/s) 
Mes Día DJ 

𝛼𝛼𝑖𝑖 (radians) FT(x) 

ord 

FE(x) 

ord 
NMi 

obs ord 

21 985 OCT 4 277 4.768336 4.4413 0.772 0.706 22 

22 460 JUL 26 207 3.563341 4.4757 0.791 0.740 3 

23 390 AGO 26 238 4.096982 4.5273 0.817 0.775 7 

24 449 JUL 27 208 3.580555 4.5618 0.833 0.809 3 

25 794 JUL 27 208 3.580555 4.5790 0.841 0.843 6 

26 720 AUG 22 234 4.028124 4.6306 0.862 0.878 13 

27 312 SEP 9 252 4.337981 4.7339 0.898 0.912 6 

28 520 SEP 15 258 4.441266 4.7683 0.909 0.946 13 

29 1045 AUG 15 227 3.907625 4.8372 0.927 0.981 12 

DJ = Julian day. 

Obs = observed values. 

Ord = ordered values. 

FT(x) = probability of theoretical non-exceedance (Equation (7)). 

FE(x) = probability of empirical non-exceedance (Equation (19)). 

NMi = no. of minor Xi and Qi combinations (Equation (20)). 
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Wald-Wolfowitz test 
 
 
This non-parametric test has been exposed and applied by Bobée and 

Ashkar (1991), Rao and Hamed (2000), and Meylan et al. (2012) to verify 

independence and stationarity in records of maximum annual flows (Qi). 

Therefore, it was proposed to apply this test to the records of 𝛼𝛼𝑖𝑖 in radians 

and of maximum annual flows, which must be random samples. 

 
 

Results and their discussion 
 
 

Finding marginal distributions 
 
 

Verification of randomness 
 
 
First, the randomness of the records to process was verified, based on the 

Wald-Wolfowitz Test, whose statistic (U) led to values of -0.720 and 

1.522, for the occurrence dates (𝛼𝛼𝑖𝑖) in radians and for the flow maximums 

of Table 1. Since U is less than 1.96, both series or samples are random. 

 
 

Distribution of annual occurrence dates 
 
 
To apply the Rosenbrock algorithm, the data (columns 3 and 4) from Table 

1 of the Guamúchil station, were adopted as initial values of µ and κ, 4.25 

and 0.50, which define an initial FO of 1.040. After 15 stages and 83 

evaluations of the FO, the following was obtained: FO = 0.0456, µ = 
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4.04104, κ = 3.79233, FN = 59.3770 and the results are concentrated in 

column 8 of Table 1 and Figure 1. This fit of the dvM covers the interval 

of occurrences from 3.0641 to 4.8372 radians, which correspond to the 

following dates: June 27 to October 8 (281 – 178 = 103 days). 

 

 

Figure 1. Fit of the von Mises distribution to the annual flood 

occurrence dates recorded at the Guamúchil hydrometric station, in 

Hydrological Region No. 10 (Sinaloa), Mexico. X axis: Occurrence dates 

(radians). Y axis: Non–exceedance probability (adimensional). 
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The estimation of dates corresponding to the return periods (Tr, 

years) that will contain the flood predictions, was explored by trial and 

error based on Equation (7), and the obtained values of µ = 4.04104 and 

κ = 3.79233 for recording Table 1. The month and day that define the 

most approximate values of non-exceedance probability [F(x)], related to 

the estimated Tr, are adopted. Table 2 shows the estimates obtained for 

the indicated Tr. 

 

Table 2. Estimated occurrence dates with von Mises distribution for the 

indicated return periods, in the annual floods recorded at the Guamúchil 

hydrometric station, Mexico. 

Tr (years) 

assigned 

Obtained 

date 

Day in 

radians 

Estimate

d F(x) 

Estimate

d 1-F(x) 

Estimated 

Tr (years) 

50 OCT 29 5.198691 0.97970 0.02030 49.3 

100 NOV 8 5.370833 0.98969 0.01031 97.0 

500 NOV 28 5.715117 0.99806 0.00194 515.5 

1 000 DEC 4 5.818403 0.99904 0.00096 1041.7 

 
 

Distribution of maximum annual flows 
 
 
Table 3 shows the fit errors and predictions (m3/s) obtained with the three 

reference distributions and the three in general use, applied to the 

maximum flow records in Table 1. The minimum value of the maximum 

flows of 65 m3/s, was lower than the magnitudes with an exceedance 
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probability of 1 %, which are estimated with the FDP applied, except with 

the Kappa distribution, which was adopted accordingly. 

 

Table 3. Fit errors and predictions (m3/s) of the six distributions applied 

in the record of maximum annual flows of the floods in the Guamúchil 

hydrometric station, of the Hydrological Region No. 10 (Sinaloa), 

Mexico. 

FDP 
EEA 

(m3/s) 

EAM 

(m3/s) 

Return periods in years 

50 100 500 1 000 5 000 10 000 

LP3 181.5 90.0 2649 3246 4855 5650 7747 8765 

GVE 152.6 71.1 2749 3647 6852 8929 16361 21178 

LOG 140.4 72.2 2702 3649 7283 9798 19499 26219 

PAG 163.3 82.6 2738 3439 5493 6599 9837 11581 

KAP 225.6 116.8 2430 3031 4946 6068 9664 11775 

WAK 152.7 76.0 2789 3697 6839 8815 15651 19951 

 

The location (u2), scale (a2) and shape (k2 and h2) parameters of 

the adopted Kappa distribution are: 578.6213, 265.6867, -0.275 and -

1.0, expressed in the following equation: 

 

𝐹𝐹(𝑦𝑦) = �1 − ℎ2 �1 −
𝑘𝑘2(𝑦𝑦−𝑢𝑢2)

𝑎𝑎2
�
1 𝑘𝑘2⁄

�
1 ℎ2⁄

 (36) 
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The Kappa distribution adopts a value of minus one in its second 

shape parameter (h), because the L ratios (𝜏𝜏3 = 0.42744 and 𝜏𝜏4= 0.32260) 

define in the L Ratio Diagram, a point above the Generalized Logistic 

distribution (Campos-Aranda, 2023a). 

 
 

Selection and ratification of the FC 
 
 
The bivariate data processing in Table 1 resulted in the following two 

association indicators: rxy = 0.3563 and 𝜏𝜏𝑛𝑛 = 0.2315. Equation (18), with 

n = 29 and the cited tau, gives a value of 0.9424; therefore, the Kendall 

ratio is not significant. 

Although the value of tau is not statistically different from zero, 

being positive indicates a direct correspondence or concordance, although 

low, between the flood occurrence dates and their maximum flow value, 

for their annual magnitudes. Such relationship or dependency will be 

modeled by the FC. 

Table 4 shows the statistical fit indicators that were obtained by 

applying the Frank and Gumbel-Hougaard (G-H) FCs. In equations (21) 

to (23), the empirical bivariate probabilities were estimated with Equation 

(20) and the theoretical ones with equations (12) and (15). 
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Table 4. Statistical indicators of the fit of the Copula Functions indicated 

in the annual floods of the Guamúchil hydrometric station, Mexico. 

Copula θ EME EAM 
No. 

DP 

No. 

DN 
MDP MDN λ𝑈𝑈 

Frank 2.1790 0.0309 0.0237 20 9 0.0682 -0.0368 0.0000 

G-H 1.3013 0.0326 0.0246 18 11 0.0785 -0.0369 0.2965 

DP, DN = positive and negative differences. 

MDP, MDN = maximum positive and negative difference. 

 

Since the application of Equation (27) led to a λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 value of 0.3416, 

there is no difficulty in selecting FC Gumbel-Hougaard in Table 4. 

On the other hand, since the value of λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 was slightly higher than 

the λ𝑈𝑈 of the FC, one should look for a FC with greater dependence on its 

right end, which was not necessary in this case, because predictions were 

not made for high return periods, but rather estimates of exceedance 

probabilities were formulated, according to occurrence dates, based on 

conditional return periods. Chen and Guo (2019) exclusively apply the 

Gumbel-Hougaard FC, in this type of frequency analysis. 

Table 5 shows the observed empirical bivariate non-exceedance 

probabilities (𝑤𝑤𝑖𝑖𝑜𝑜) calculated with Equation (20) and estimated theoretical 

(𝑤𝑤𝑖𝑖𝑐𝑐) with the Gumbel-Hougaard FC. The maximum positive and negative 

differences are also indicated shaded. 
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Table 5. Joint non-exceedance probabilities and their differences, 

calculated with the Gumbel-Hougaard FC, for the annual floods of the 

Guamúchil station, Mexico. 

No. 𝑤𝑤𝑖𝑖𝑜𝑜 𝑤𝑤𝑖𝑖𝑐𝑐 Differences 

1 0.0879 0.0785 0.0094 

2 0.0192 0.0561 -0.0369 

3 0.3970 0.3529 0.0441 

4 0.8091 0.8232 -0.0141 

5 0.2596 0.2318 0.0279 

6 0.7404 0.7201 0.0203 

7 0.0879 0.0881 -0.0002 

8 0.2940 0.2155 0.0785 

9 0.0879 0.1215 -0.0335 

10 0.1566 0.1165 0.0400 

11 0.2940 0.2812 0.0128 

12 0.1223 0.1229 -0.0007 

13 0.7060 0.7126 -0.0066 

14 0.0536 0.0250 0.0285 

15 0.8434 0.8391 0.0043 

16 0.0192 0.0103 0.0090 

17 0.3283 0.2514 0.0769 

18 0.6717 0.6919 -0.0202 

19 0.2596 0.2485 0.0111 
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No. 𝑤𝑤𝑖𝑖𝑜𝑜 𝑤𝑤𝑖𝑖𝑐𝑐 Differences 

20 0.1566 0.1486 0.0080 

21 0.7404 0.7410 -0.0007 

22 0.0879 0.1043 -0.0163 

23 0.2253 0.2156 0.0097 

24 0.0879 0.1061 -0.0182 

25 0.1909 0.1628 0.0282 

26 0.4313 0.3619 0.0694 

27 0.1909 0.1998 -0.0089 

28 0.4313 0.3865 0.0448 

29 0.3970 0.3623 0.0346 

- - - - 

 

On the other hand, Equation (28) defines Dn = 0.2522 and since the 

maximum absolute difference in Table 5 is 0.0785, the Kolmogorov-

Smirnov test ratifies the adopted Gumbel-Hougaard (G-H) FC. The 

correlation coefficient (rxy) between the empirical and theoretical 

probabilities, estimated with the FC of G-H, was 0.9931; therefore, the fit 

is excellent. The graphic contrast between both probabilities, to ratify the 

adoption of FC of G-H, is shown in Figure 2 for the data in Table 5. 
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Figure 2. Graphic contrast of joint probabilities of the occurrence dates 

and the maximum flows of the floods recorded at the Guamúchil 

hydrometric station, Mexico; with the Gumbel-Hougaard FC. X axis: 

Empirical non–exceedance probability. Y axis: Theoretical non–

exceedance probability. 
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Graphs of joint return periods 
 
 
The bivariate return periods of the AND type are calculated with Equation 

(30). For their estimates with values of 𝑇𝑇𝑋𝑋𝑋𝑋′  of 50, 100 and 500 years, a 

date (month and day) is defined and its non-exceedance probability F(x) 

with Equation (7) and the values of µ = 4.04104 and κ = 3.79233. Now 

by trial and error, a maximum flow (y = qmax) is assigned and its F(y) is 

estimated with Equation (36). Both results are taken to Equation (15), 

with θ = 1.3013, to estimate the joint non-exceedance probability and 

thus obtaining with Equation (30), the 𝑇𝑇𝑋𝑋𝑋𝑋′  that must coincide with the 

searched value. 

Dates of occurrence and maximum flows are selected arbitrarily, in 

order to define the curves of 𝑇𝑇𝑋𝑋𝑋𝑋′ . Table 6 shows the values adopted to 

define the three graphs in Figure 3. 

 

Table 6. Pairs of dates of occurrence and maximum annual flow used to 

define the graphs of the AND type joint return period with the Gumbel-

Hougaard FC, in the floods of the Guamúchil station, Mexico. 

𝑻𝑻𝑿𝑿𝑿𝑿′  = 50 years 𝑻𝑻𝑿𝑿𝑿𝑿′  = 100 years 𝑻𝑻𝑿𝑿𝑿𝑿′  = 500 years 

Date ND* 
Qm 

M3/s 
Date ND* 

Qm 

M3/s 
Date ND* 

Qm 

M3/s 

Oct 29 121 117 Nov 8 131 255 Nov 28 151 0 

Oct 27 119 569 Nov 6 129 717 Nov 27 150 607 

Oct 25 117 814 Nov 5 128 880 Nov 26 149 1055 
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𝑻𝑻𝑿𝑿𝑿𝑿′  = 50 years 𝑻𝑻𝑿𝑿𝑿𝑿′  = 100 years 𝑻𝑻𝑿𝑿𝑿𝑿′  = 500 years 

Date ND* 
Qm 

M3/s 
Date ND* 

Qm 

M3/s 
Date ND* 

Qm 

M3/s 

Oct 22 114 1097 Nov 3 126 1159 Nov 25 148 1452 

Oct 20 112 1248 Oct 31 123 1496 Nov 24 147 1798 

Oct 15 107 1530 Oct 28 120 1749 Nov 23 146 2095 

Oct 10 102 1719 Oct 25 117 1941 Nov 22 145 2347 

Oct 5 97 1854 Oct 20 112 2171 Nov 21 144 2560 

Oct 1 93 1937 Oct 15 107 2331 Nov 20 143 2743 

Sep 25 87 2034 Oct 10 102 2450 Nov 18 141 3036 

Sep 20 82 2098 Oct 5 97 2543 Nov 15 138 3357 

Sep 15 77 2152 Sep 30 92 2617 Nov 10 133 3707 

Sep 15 72 2197 Sep 25 87 2679 Nov 5 128 3937 

Sep 5 67 2235 Sep 20 82 2731 Oct 31 123 4103 

Aug 31 62 2268 Sep 15 77 2776 Oct 25 117 4252 

Aug 25 56 2302 Sep 10 72 2815 Oct 20 112 4349 

Aug 20 51 2326 Sep 5 67 2849 Oct 15 107 4429 

Aug 15 46 2346 Aug 31 62 2879 Oct 10 102 4496 

Aug 10 41 2363 Aug 25 56 2910 Oct 5 97 4554 

Aug 5 36 2377 Aug 20 51 2932 Sep 30 92 4604 

Jul 31 31 2389 Aug 15 46 2951 Sep 25 87 4648 

Jul 25 25 2400 Aug 10 41 2967 Sep 20 82 4687 

Jul 13 13 2415 Aug 5 36 2980 Sep 15 77 4722 
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𝑻𝑻𝑿𝑿𝑿𝑿′  = 50 years 𝑻𝑻𝑿𝑿𝑿𝑿′  = 100 years 𝑻𝑻𝑿𝑿𝑿𝑿′  = 500 years 

Date ND* 
Qm 

M3/s 
Date ND* 

Qm 

M3/s 
Date ND* 

Qm 

M3/s 

Jul 1 1 2430 Jul 31 31 2992 Sep 10 72 4754 

   Jul 25 25 3002 Sep 5 67 4783 

   Jul 20 20 3009 Aug 31 62 4808 

   Jul 15 15 3015 Aug 20 51 4855 

   Jul 10 10 3019 Aug 10 41 4886 

   Jul 1 1 3031 Aug 5 36 4899 

      Jul 31 31 4909 

      Jul 25 25 4919 

      Jul 20 20 4926 

      Jul 1 1 4946 

*ND = day number from the 1st. of July. 
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Figure 3. Graphs of the three design joint return periods 𝑇𝑇𝑋𝑋𝑋𝑋′  obtained 

with the Gumbel-Hougaard FC, in the floods of the Guamúchil 

hydrometric station, Mexico. X axis: dates of occurrence in day number. 

Y axis: maximum annual flow (m3/s). 

 
 

Probabilities of occurrence of design events 
 
 
Table 7, Table 8 and Table 9 show the conditional exceedance probabilities 

P(X>x|Qm>qo), calculated with Equation (35), when qo has a return 

period (Tr) of 50, 100 and 500 years, that is, when the marginal 

probability v = FY(y) is equal to 0.98. 0.99 and 0.998 and the flow Qm 

exceeds 2 430, 3 031 and 4 946 m3/s, according to Table 3. 
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Table 7. Calculations of the conditional probability of the occurrence 

dates provided that the maximum flow has a Tr = 50 years in the floods 

of the Guamúchil hydrometric station, Mexico. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Proposal PE (%) 99 95 90 80 70 60 50 40 30 20 10 5 1 

Date obtained JUN 3 JUN 30 JUL 13 JUL 27 AUG 6 AUG 15 AUG 23 AUG 30 SEP 8 SEP 18 OCT 2 OCT 15 NOV 8 

αi (radians) = Xi 2.6510 3.1158 3.3396 3.5806 3.7527 3.9076 4.0453 4.1658 4.3208 4.4929 4.7339 4.9577 5.3708 

Real PE 0.9902 0.9509 0.8994 0.8025 0.7038 0.5977 0.4959 0.4068 0.3000 0.2002 0.1016 0.0488 0.0103 

PNE of the FC GH 0.0097 0.0489 0.1002 0.1967 0.2949 0.4003 0.5014 0.5897 0.6954 0.7939 0.8902 0.9404 0.9739 

Conditional PE 0.9985 0.9916 0.9813 0.9592 0.9333 0.9012 0.8652 0.8280 0.7726 0.7016 0.5853 0.4591 0.2106 

PE = probability of exceedance, dimensionless. 

PNE = probability of non-exceedance, dimensionless. 

GH = Gumbel-Hougaard FC. 

 
Table 8. Calculations of the conditional probability of the occurrence 

dates provided that the maximum flow has a Tr = 100 years in the 

floods of the Guamúchil hydrometric station, Mexico. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Proposal PE (%) 99 95 90 80 70 60 50 40 30 20 10 5 1 

Date obtained JUN 3 JUN 30 JUL 13 JUL 27 AUG 6 AUG 15 AUG 23 AUG 30 SEP 8 SEP 18 OCT 2 OCT 15 NOV 8 

αi (radians) = Xi 2.6510 3.1158 3.3396 3.5806 3.7527 3.9076 4.0453 4.1658 4.3208 4.4929 4.7339 4.9577 5.3708 

Real PE 0.9902 0.9509 0.8994 0.8025 0.7038 0.5977 0.4959 0.4068 0.3000 0.2002 0.1016 0.0488 0.0103 

PNE of the FC GH 0.0098 0.0490 0.1005 0.1972 0.2957 0.4015 0.5030 0.5918 0.6982 0.7974 0.8951 0.9467 0.9828 

Conditional PE 0.9988 0.9932 0.9849 0.9671 0.9461 0.9202 0.8911 0.8609 0.8160 0.7582 0.6622 0.5543 0.3073 

PE = probability of exceedance, dimensionless. 

PNE = probability of non-exceedance, dimensionless. 

GH = Gumbel-Hougaard FC. 
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Table 9. Calculations of the conditional probability of the occurrence 

dates provided that the maximum flow has a Tr = 500 years in the 

floods of the Guamuchil hydrometric station, Mexico. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Proposal PE (%) 99 95 90 80 70 60 50 40 30 20 10 5 1 

Date obtained JUN 3 JUN 30 JUL 13 JUL 27 AUG 6 AUG 15 AUG 23 AUG 30 SEP 8 SEP 18 OCT 2 OCT 15 NOV 8 

αi (radians) = Xi 2.6510 3.1158 3.3396 3.5806 3.7527 3.9076 4.0453 4.1658 4.3208 4.4929 4.7339 4.9577 5.3708 

Real PE 0.9902 0.9509 0.8994 0.8025 0.7038 0.5977 0.4959 0.4068 0.3000 0.2002 0.1016 0.0488 0.0103 

PNE of the FC GH 0.0098 0.0491 0.1006 0.1975 0.2961 0.4022 0.5039 0.5930 0.6997 0.7995 0.8980 0.9506 0.9888 

Conditional PE 0.9993 0.9958 0.9907 0.9798 0.9670 0.9510 0.9332 0.9147 0.8870 0.8514 0.7919 0.7231 0.5423 

PE = probability of exceedance, dimensionless. 

PNE = probability of non-exceedance, dimensionless. 

GH = Gumbel-Hougaard FC. 

 

Then, for the case of qo = 2 430 m3/s (Table 7), the following event 

probabilities can occur: (1) the occurrence probability of such flows after 

July 13 is 98.13 %; (2) the probability that such flows occur between July 

13 and November 8 will be: 98.13 - 21.06 = 77.07 %, and (3) during the 

period from September 8 to 18 will be: 77.26 - 70.16 = 7.10 %. 

Then, for the case of qo = 3 031 m3/s (Table 8), the following event 

probabilities can occur: (1) the occurrence probability of such flows after 

July 13 is 98.49 %; (2) the probability that such flows occur between July 

13 and November 8 will be: 98.49 - 30.73 = 67.76 %, and (3) during the 

period from September 8 to 18 will be: 81.60 - 75.82 = 5.78 %. 

Finally, for the case of qo = 4946 m3/s (Table 9), there are three 

following event probabilities (1) the probability of occurrence of such flows 

after July 13 is 99.07 %; (2) the probability that such flows occur between 
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July 13 and November 8 will be: 99.07 - 54.23 = 44.84 %, and (3) during 

the period from September 8 to 18 will be: 88.70 - 85.14 = 3.56 %. 

The comparison between the results of the three limits established 

for the maximum flow (qo), indicates that the probability of occurrence 

after July 13 increases slightly as the qo grows, which is logical, given the 

positive correlation of rxy = 0.3563 shown between the occurrence dates 

and the maximum flows. The above is also influenced by the denominator 

of Equation (35); which, as qo increases, is reduced from 0.02 to 0.002. 

On the contrary, the two occurrence probabilities calculated for the 

two periods within the wet season decrease as qo increases, which is due 

to the lower probability of exceedance of each maximum flow, having 2, 

1 and 0.2 %. 

 
 

Contrast with results of a previous work 
 
 
Chen and Guo (2019) present on their pages 42 to 44 and Table 3.2, as 

a case study of a bivariate flood frequency analysis of occurrence dates 

and maximum flow, its application in the multi-purpose Geheyan 

reservoir, with a basin of 17 000 km2. which receives an average annual 

rainfall of 1 500 millimeters and whose flood season covers five months 

from May 1 to September 30 (153 days). Keeping the due proportions, 

the results of Table 3.2 coincide with those of Table 8, since both are for 

a maximum flow of a return period of 100 years. 
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Application in basins with two wet seasons 
 
 
In general, in large basins, only the storms which result in cold fronts and 

hurricanes, are covered entirely with low intensity and long duration rains, 

which generate floods of great magnitude, due to their maximum flow, 

volume and duration. On the other hand, in such basins, convective 

storms are local, of great intensity and give rise to ordinary floods. 

In Mexico, the large basins of the mountainous zone of Hydrological 

Region No. 10 (Sinaloa) present two dates of occurrence of their floods, 

in autumn and winter (November to March) and in summer (June to 

September). In these flood regimes there are two modes and their 

probabilistic characterization of their occurrence dates is carried out with 

a mixture of von Mises distributions (Carta et al., 2008; Campos-Aranda, 

2023b). 

Chen et al. (2010), and Chen and Guo (2019) have presented floods 

seasonal analyzes to define times of occurrence, in basins with two or 

more wet seasons. 

 
 

Application in large basins with a wet season 
 
 
In large basins with flood regimes of a single wet season, the bivariate 

study of dates of occurrence and maximum flow, in their various 

tributaries or main rivers can help to understand the evolution or 

development of their floods and then make more reliable forecasts of 

arrival dates downstream. 
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Conclusions 
 
 
The bivariate frequency analysis of dates of occurrence (X) and maximum 

flow (Qm) of annual floods is feasible due to the Copula functions; which 

allow building their joint probability distribution, based on some univariate 

marginals. The von Mises distribution is the one that characterizes the 

occurrence dates, and the Qm in particular is an ideal FDP. 

In this study, a copula function (FC) of a single fitting parameter (θ) 

was used, which is estimated based on the Kendall tau ratio, which is 

calculated with the joint registration of X and Qm. Such an approach first 

estimates λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶, or observed in the right tail dependency of the available 

record set. Afterwards, an FC is that reproduces such a value of λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 is 

searched; in this study the Gumbel-Hougaard was chosen. An FC that 

does not have a significant right tail dependency, such as Frank's, is also 

applied to allow comparing and assessing the quality of the previously 

adopted FC fit. 

The described numerical application, in the 32 annual data of 

occurrence dates and maximum flow (m3/s) of the annual floods recorded 

in the Guamúchil hydrometric station of the Hydrological Region No. 10 

(Sinaloa), Mexico; showed in Figure 2 a reliable reproduction of the 

empirical and theoretical bivariate probabilities, through the Gumbel-

Hougaard FC, with a linear correlation coefficient of 0.9931. 

On the other hand, in Figure 3, with regard to the joint return 

periods of AND type design, infinite pairs of critical X and Qm can be 

defined, since they are in the curved region of each graph. 
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Finally, Tables 7, 8 and 9 show the calculation of conditional 

probabilities, which allow estimating, for an arbitrarily adopted period, the 

exceedance probability of design events with return periods of 50, 100 

and 500 years. 

 

References 

Aldama, A. A. (2000). Hidrología de avenidas. Conferencia Enzo Levi 

1998. Ingeniería Hidráulica en México, 15(3), 5-46. 

Aldama, A. A., Ramírez, A. I., Aparicio, J., Mejía-Zermeño, R., & Ortega-

Gil, G. E. (2006). Seguridad hidrológica de las presas en México. 

Jiutepec, México: Instituto Mexicano de Tecnología del Agua. 

Bobée, B. (1975). The Log-Pearson type 3 distribution and its application 

to Hydrology. Water Resources Research, 11(5), 681-689. DOI: 

10.1029/WR011i005p00681 

Bobée, B., & Ashkar, F. (1991). Chapter 1: Data requirements for 

hydrologic frequency analysis. In: The Gamma Family and derived 

distributions applied in Hydrology (pp. 1-12). Littleton, USA: Water 

Resources Publications. 

Burn, D. H. (1997). Catchment similarity for regional flood frequency 

analysis using seasonality measures. Journal of Hydrology, 202(1-

4), 212-230. DOI: 10.1016/S0022-1694(97)00068-1 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Campos-Aranda, D. F. (2003). Capítulo 7. Integración Numérica y 

Capítulo 9. Optimización numérica. En: Introducción a los métodos 

numéricos: software en Basic y aplicaciones en hidrología superficial 

(pp. 137-153, 172-211). San Luis Potosí, México: Editorial 

Universitaria Potosina. 

Campos-Aranda, D. F. (2017). Definición de tres épocas de crecientes 

utilizando estadísticos direccionales. Tecnología y ciencias del agua, 

8(1), 155-165. 

Campos-Aranda, D. F. (2023a). Análisis de Frecuencias comparativo con 

momentos L entre la distribución Kappa y seis de aplicación 

generalizada. Tecnología y ciencias del agua, 14(1), 200-250. DOI: 

10.24850/j-tyca-14-01-05 

Campos-Aranda, D. F. (2023b). Caracterización probabilística de las 

fechas de ocurrencia de las crecientes anuales mediante la 

distribución de von Mises. Tecnología y ciencias del agua, 14(2), 

204-260. DOI: 10.24850/j-tyca-14-02-06 

Carta, J. A., Bueno, C., & Ramírez, P. (2008). Statistical modelling of 

directional wind speeds using mixtures of von Mises distributions: 

Case study. Energy Conversion and Management, 49(5), 897-907. 

DOI: 10.1016/j.enconman.2007.10.017 

Cunderlik, J. M., Ouarda, T. B. M. J., & Bobée, B. (2004). Determination 

of flood seasonality from hydrological records. Hydrological 

Sciences Journal, 49(3), 511-526. DOI: 

10.1623/hysj.49.3.511.54351 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean 

absolute error (MAE)? - Arguments against avoiding RMSE in the 

literature. Geoscientific Model Development, 7(3), 1247-1250. DOI: 

10.5194/gmd-7-1247-2014 

Chen, L., Guo, S., Yan, B., Liu, P., & Fang, B. (2010). A new seasonal 

design flood method based on bivariate joint distribution of flood 

magnitude and date of occurrence. Hydrological Sciences Journal, 

55(8), 1264-1280. DOI: 10.1080/02626667.2010.520564 

Chen, L., Singh, V. P., Guo, S., Fang, B., & Liu, P. (2013). A new method 

for identification of flood seasons using directional statistics. 

Hydrological Sciences Journal, 58(1), 28-40. DOI: 

10.1080/02626667.2012.743661 

Chen, L., & Guo, S. (2019). Chapter 3. Copula-based Flood Frequency 

Analysis and Chapter 4. Copula-based Seasonal Design Flood 

Estimation. In: Copulas and its application in Hydrology and Water 

Resources. (pp. 39-71, 73-96). Gateway East, Singapore: Springer. 

Chowdhary, H., & Singh, V. P. (2019). Chapter 11. Multivariate frequency 

distributions in hydrology. In: Teegavarapu, R. S. V., Salas, J. D., 

& Stedinger, J. R. (eds.). Statistical analysis of hydrologic variables 

(pp. 407-489). Reston, USA: American Society of Civil Engineers. 

Davis, P. J., & Polonsky, I. (1972). Chapter 25. Numerical interpolation, 

differentiation and integration. In: Abramowitz, M., & Stegun, I. A. 

(eds.). Handbook of mathematical functions (pp. 875-926) (9th 

print). New York, USA: Dover Publications. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Dupuis, D. J. (2007). Using copulas in hydrology: Benefits, cautions, and 

issues. Journal of Hydrologic Engineering, 12(4), 381-393. DOI: 

10.1061/(ASCE)1084–0699(2007)12:4(381) 

Durrans, S. R., Eiffe, M. A., Thomas Jr., W. O., & Goranflo, H. M. (2003). 

Joint seasonal/annual flood frequency analysis. Journal of 

Hydrologic Engineering, 8(4), 181-189. DOI: 10.1061/(ASCE)1084-

0699(2003)8:4(181) 

Escalante-Sandoval, C. A., & Reyes-Chávez, L. (2002). Capítulo 9. 

Análisis conjunto de eventos hidrológicos. En: Técnicas estadísticas 

en hidrología (pp. 203-246). Ciudad de México, México: Facultad de 

Ingeniería de la Universidad Nacional Autónoma de México. 

Frahm, G., Junker, M., & Schmidt, R. (2005). Estimating the tail-

dependence coefficient: Properties and pitfalls. Insurance: 

Mathematics and Economics, 37(1), 80-100. DOI: 10.1016/j-

insmatheco.2005.05.008 

Genest, C., & Favre, A. C. (2007). Everything you always wanted to know 

about Copula modeling but were afraid to ask. Journal of Hydrologic 

Engineering, 12(4), 347-368. DOI: 10.1061/(ASCE)1084-

0699(2007)12:4(347) 

Genest, C., & Chebana, F. (2017). Copula modeling in hydrologic 

frequency analysis (pp. 30.1-30.10) (2nd ed.). In: Singh, V. P. (ed.). 

Handbook of applied hydrology. New York, USA: McGraw-Hill 

Education. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Hosking, J. R., & Wallis, J. R. (1997). Appendix. L-moments for some 

specific distributions. In: Regional frequency analysis. An approach 

based on L-moments. (pp. 191-209). Cambridge, England: 

Cambridge University Press. 

Khedun, C. P., Singh, V. P., & Byrd, A. R. (2019). Joint probability of 

extreme streamflow and its day of occurrence. Journal of Hydrologic 

Engineering, 24(8), 06019005:1-8. DOI: 10.1061/(ASCE)HE.1943-

5584.0001813 

Kite, G. W. (1977). Chapter 12. Comparison of frequency distributions. 

In: Frequency and risk analyses in hydrology (pp. 156-168). Fort 

Collins, USA: Water Resources Publications. 

Kuester, J. L., & Mize, J. H. (1973). Chapter 9. Multivariable unconstrained 

methods. III. ROSENB algorithm. In: Optimization techniques with 

Fortran (pp. 320-330). New York, USA: McGraw-Hill Book Co. 

Metcalfe, A. V. (1997). Theme 2.4.4. Vector variables and von Mises 

distribution. In: Statistics in Civil Engineering (pp. 31-32). London, 

England: Arnold Publishers. 

Meylan, P., Favre, A. C., & Musy, A. (2012). Chapter 3. Selecting and 

checking data series and Theme 9.2. Multivariate Frequency 

Analysis using Copulas. In: Predictive hydrology. A frequency 

analysis approach (pp. 29-70, 164-176). Boca Raton, USA: CRC 

Press. 

Nieves, A., & Domínguez, F. C. (1998). Sección 6.2. Cuadratura de Gauss. 

En: Métodos numéricos. Aplicados a la ingeniería (pp. 416-425). 

México, DF, México: Compañía Editorial Continental. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Olver, F. W. J. (1972). Chapter 9. Bessel Functions of Integer Order. In: 

Abramowitz, M., & Stegun, I. A. (eds.). Handbook of Mathematical 

Functions (pp. 355-436) (9th print.). New York, USA: Dover 

Publications. 

Poulin, A., Huard, D., Favre, A. C., & Pugin, S. (2007). Importance of tail 

dependence in bivariate frequency analysis. Journal of Hydrologic 

Engineering, 12(4), 394-403. DOI: 10.1061/(ASCE)1084-

0699(2007)12:4(394) 

Ramírez-Orozco, A. I., Gutiérrez-López, A., & Ruiz-Silva, H. L. (2009). 

Análisis de la ocurrencia en el tiempo de los gastos máximos en 

México. Ingeniería Hidráulica en México, 24(1), 115-124. 

Ramírez-Orozco, A. I. & Aldama, A. A. (2000). Capítulo 1. Teoría 

estadística y análisis de frecuencias conjunto. En: Análisis de 

frecuencias conjunto para estimación de avenidas de diseño (pp. 

25-58). Avances en Hidráulica No. 7. México, DF, México: 

Asociación Mexicana de Hidráulica e Instituto Mexicano de 

Tecnología del Agua. 

Rao, A. R., & Hamed, K. H. (2000). Chapter 1. Introduction. In: Flood 

frequency analysis (pp. 1-21). Boca Raton, USA: CRC Press. 

Requena, A. I., Mediero, L., & Garrote, L. (2013). A bivariate return period 

based on copulas for hydrologic dam design: Accounting for 

reservoir routing in risk estimation. Hydrology and Earth System 

Sciences, 17(8), 3023-3038. DOI: 10.5194/hess-17-3023-2013 

Rosenbrock, H. H. (1960). An automatic method of finding the greatest 

or least value of a function. Computer Journal, 3(3), 175-184. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). 

Chapter 3. Bivariate analysis via Copulas; Appendix B. Dependence 

and Appendix C. Families of Copulas. In: Extremes in nature. An 

approach using Copulas (pp. 131-175, 219-232, 233-269). 

Dordrecht, The Netherlands: Springer. 

Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2006). Bivariate frequency 

analysis of floods using Copulas. Journal of the American Water 

Resources Association, 42(6), 1549-1564. 

Stegun, I. A. (1972). Chapter 27. Miscellaneous functions. In: 

Abramowitz, M., & Stegun, I. A. (eds.). Handbook of Mathematical 

Functions (pp. 997-1010) (9th print.). New York, USA: Dover 

Publications. 

Vogel, R. M., & Castellarin, A. (2017). Risk, reliability, and return periods 

and hydrologic design. In: Singh, V. P. (ed.). Handbook of applied 

hydrology (pp. 78.1-78.10) (2nd ed.). New York, USA: McGraw-Hill 

Education. 

Volpi, E., & Fiori, A. (2012). Design event selection in bivariate 

hydrological frequency analysis. Hydrological Sciences Journal, 

57(8), 1506-1515. DOI: 10.1080/02626667.2012.726357 

WRC, Water Resources Council. (1977). Guidelines for determining flood 

flow frequency (revised edition). Bulletin #17A of the Hydrology 

Committee. Washington, DC, USA: Water Resources Council. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01


 

 

 

 

 
 

 

 

2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecom-
mons.org/licenses/by-nc-sa/4.0/) 

 
Tecnología y ciencias del agua, ISSN 2007-2422, 

15(4), 80-136. DOI: 10.24850/j-tyca-2024-04-03 
 

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute 

error (MAE) over the root mean square error (RMSE) in assessing 

average model performance. Climate Research, 30(1), 79-82. DOI: 

10.3354/cr030079 

Yue, S. (2000a). Joint probability distribution of annual maximum storm 

peaks and amounts as represented by daily rainfalls. Hydrological 

Sciences Journal, 45(2), 315-326. DOI: 

10.1080/02626660009492327 

Yue, S. (2000b). The Gumbel mixed model applied to storm frequency 

analysis. Water Resources Management, 14(5), 377-389. 

Yue, S., & Rasmussen, P. (2002). Bivariate frequency analysis: Discussion 

of some useful concepts in hydrological application. Hydrological 

Processes, 16(14), 2881-2898. DOI: 10.1002/hyp.1185 

Zhang, L. & Singh, V. P. (2006). Bivariate flood frequency analysis using 

the Copula method. Journal of Hydrologic Engineering, 11(2), 150-

164. DOI: 10.1061/(ASCE)1084-0699(2006)11:2(150) 

Zhang, L. & Singh, V. P. (2019). Chapter 3. Copulas and their properties. 

In: Copulas and their applications in water resources engineering 

(pp. 62-122). Cambridge, UK: Cambridge University Press. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-04-03&amp;domain=pdf&amp;date_stamp=2024-07-01

	Bivariate Flood Frequency Analysis of occurrence dates and maximum flow through Copula functions
	Introduction
	Generalities
	Objectives

	Operative theory
	Circular data and directional indicators
	Average address and seasonality index
	The von Mises distribution
	Numerical integration of the dvM
	Fit of the dvM in the wet season
	Rosenbrock algorithm
	Advantages of Copula Functions
	Copula families to apply
	Association measures
	Concordance
	Kendall's tau ratio

	Dependency parameter estimation
	Estimation of joint empirical probabilities
	Selection of the Copula Function
	Dependency at the top end
	Generalities
	Estimation of the observed dependency

	Ratification of the selected Copula function
	Selection of marginal distributions
	Fitting errors
	Bivariate return periods

	Data for processing
	Wald-Wolfowitz test

	Results and their discussion
	Finding marginal distributions
	Verification of randomness
	Distribution of annual occurrence dates
	Distribution of maximum annual flows

	Selection and ratification of the FC
	Graphs of joint return periods
	Probabilities of occurrence of design events
	Contrast with results of a previous work
	Application in basins with two wet seasons
	Application in large basins with a wet season

	Conclusions
	References


