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Abstract

Between the months of December to April, regions of northern Peru,
including Lambayeque, are affected by maximum extreme events,
wreaking havoc on homes, flooding crop fields, collapsing hydraulic
works, and the most irreparable loss of human lives. In this line, the
objective of this research was to apply Artificial Neural Networks to rain-
runoff modeling in a basin in northern Peru, namely, the Chancay
Lambayeque river basin belonging to the Pacific slope. For this purpose,
records of precipitation and flows of 30 years (hydrological normal) were
collected from 12 hydrometeorological stations belonging to the basin and
neighboring it. Thus, applying a model of Long and Short Term Memory
Networks (LSTM) we proceeded to model the rain, seeking to follow the
behavior of the flows observed in the Racarrumi hydrometric station, with
80 % of the information the model was trained and with 20 % it was
validated. In short, it was obtained that in the modeling validation stage,

the Nash coefficient was 0.93, corresponding to the qualifier "very good".

Keywords: Basin, precipitation, flow, artificial neural networks,

hydrometeorological stations.
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Resumen

Entre los meses de diciembre a abril, regiones del norte del Peru, entre
ellas Lambayeque, se ven afectados por eventos extremos maximos,
ocasionando estragos en viviendas, inundacion de campos de cultivo,
colapso de obras hidraulicas y, lo mas irreparable, pérdida de vidas
humanas. En esa linea, el objetivo de la presente investigacién fue aplicar
redes neuronales artificiales al modelamiento de lluvia-escorrentia en una
cuenca del norte de Perud, en especifico, en la cuenca del rio Chancay
Lambayeque, perteneciente a la vertiente del Pacifico. Para ello se
recopilaron registros de precipitacion y caudales de 30 afos (normal
hidroldgica), de 12 estaciones hidrometeoroldgicas pertenecientes tanto
a la cuenca como aledanas a ésta. Asi, aplicando un modelo de redes de
memoria a largo y corto plazo (LSTM), se procedido a modelar la lluvia,
buscando seguir el comportamiento de los caudales observados en la
estacion hidrométrica Racarrumi; con un 80 % de la informacidon se
entrend al modelo y con un 20 % se validd. En suma, se obtuvo que en
la etapa de validacion del modelamiento, el coeficiente de Nash fue de

0.93, correspondiéndole el calificativo de “muy bueno”.

Palabras clave: cuenca, precipitacion, caudales, redes neuronales

artificiales, estaciones hidrometeoroldgicas.
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Introduction

Flow behavior during rainfall events occurs as a nonlinear process, and
runoff modeling is one of the key challenges in the field of hydrology,
especially in watersheds where topographic data are not available (Fan et
al., 2020). Research on rainfall-runoff modeling contributes to risk
reduction, counteracting damages, minimizing loss of human lives and
reducing the impact on properties, based on technically and scientifically
based proposals (Mosavi Ozturk, & Chau, 2018), therefore, the prediction
and modeling of discharges in a river basin is of utmost importance since
it allows the issuance of warnings for flood control and management
(Jimeno, Senent, Pérez, Pulido, & Cecilia, 2017). Likewise, by having a
better accuracy of the records, it is possible to estimate and optimize the
design of hydraulic works that help to counteract events such as El Nifo
(@), preserving hydraulic infrastructure of all types, housing, crop areas,
animals, and most importantly, avoiding the loss of human lives
(Cromwell et al., 2021; Rodriguez, Diaz, Ballesteros, Rohrer, & Stoffel,
2019).

On the other hand, hydrological models such as distributed or semi-
distributed ones require different types of data and inputs, while the
application of machine and deep learning techniques simplifies the
amount of these inputs (Basagaoglu, Chakraborty, & Winterle, 2021;
Wang et al., 2019). Thus, for example, the advantage of hydrological
models that work with automatic and deep learning techniques, with
respect to clustered or distributed models, is that they are able to simulate

areas of different sizes (Sattari, Apaydin, Band, Mosavi, & Prasad, 2021;
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Valderrama-Purizaca, Chavez-Barturen, Mufoz-Pérez, Tuesta-Monteza, &

Mejia-Cabrera, 2021).

In that context, rainfall-runoff modeling plays a crucial role at
several points in the management of hydrological resources, helping
significantly to solve problems related to flood control and agricultural
land protection (Fu et al., 2020). The simulation of hydrometeorological
variables is a very important process in hydrology, usually providing
support for different water resources planning and management activities
(Kim et al., 2021). Designing a physical model for such phenomena is
often costly and also requires absolute domain expertise, however,
machine and deep learning techniques allow generating less costly, less
complex and more efficient models (Qin, Liang, Chen, Lei, & Kang, 2019;
Zhang et al., 2020; Shi et al., 2020). It is also worth mentioning that
another of the hydrological processes that have been treated with
automatic and deep learning techniques is the estimation of changes in
river flow (Farfan, Palacios, Ulloa, & Avilés, 2020), lake water level
prediction (Yaseen et al., 2020) and evapotranspiration estimation
(Afzaal, Farooque, Abbas, Acharya, & Esau, 2020); complex problems in
the field of hydrology due to the incorporation of various
hydrometeorological and morphological characteristics. Following that
line, the objective of the present research was to apply Artificial Neural
Networks to rainfall-runoff modeling and evaluate its model performance
by means of the Nash-Sutcliffe efficiency metric (NSE), in a watershed of

northern Peru, namely, the Chancay Lambayeque river basin.
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Materials and methods

Methodology

The procedure developed in this study is presented in Figure 1. The data
used in this study were from 12 hydrometeorological stations; 11
meteorological and 01 hydrological, from which 30 years of precipitation
and flow records were considered on a daily scale respectively (normal
hydrological), from 01/01/1991 to 31/12/2020, selected according to the
availability of the information. With 80 % (24 years) of the data, the Long
and Short Term Memory Model (LSTM) was trained and calibrated, and
with 20 % it was validated (06 years). Along these lines, the Python
v.2.7.8 programming language, libraries such as Keras v.2.4.4 and Tensor
Flow v.2.3.2 were used to develop the ANNs. Likewise, libraries such as
Numpy v.1.19.5 were used for numerical processing, Pandas v.1.1.4 to
generate tables, Matplotlib v.3.3.3 to plot the data and Seaborn to
correlate data. Scikit-Learn v.0.23.4 was used for the implementation of
Adam's optimization and Mean Squared Error. The code was run on a
laptop with Intel(R) Core (TM) i5-4210U 2.40GHz x 4 64-bit CPU and
12.0GB RAM in Windows 10 environment.
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Figure 1. Procedure developed in rainfall-runoff modeling.
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Study area

The study area is the Chancay Lambayeque river basin, located in
northern Peru, which from time to time is exposed to events such as
floods, the occurrence of the EI Nifio phenomenon, which in turn
generates heavy rainfall, flooding of streams, high temperatures, among
others. Along these lines, rainfall-runoff modeling in the Chancay
Lambayeque River basin by applying Neural Network models is a
fundamental tool for generating hydro-meteorological information at
strategic points. On the other hand, according to the geomorphological
parameters of the basin, Figure 2 shows an area of 4043.73 km2 (large
basin), a perimeter of 432.86 km and a hypsometric curve in the Maturity
phase. Likewise, it is an elongated basin with a slow response as

maximum runoff to precipitation, with a drainage density of Medium.
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Figure 2. Chancay River Basin and hydrometeorological stations

considered in the study.

Artificial Neural Networks (ANNs)

ANNs are mathematical modeling systems that perform parallel data
processing (Adamowski, Chan, Prasher, Ozga-Zielinski, & Sliusarieva,
2012). The first ANN was developed in 1943 by McCulloch and Pitts with
the purpose of imitating the functioning of biological neural networks by
interconnecting them, as shown in Figure 3. In hydrology, they began to

be used in the 1990s, as was done by French, Krajewski and Cuykendall
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(1992) for rainfall prediction (Choubin, Khalighi-Sigaroodi, Malekian, &
Kisi, 2014). Along these lines, some researches recommend ANNs as one
of the most suitable modeling techniques that provide an acceptable
generalization capacity and speed compared to other conventional models
(Nabipour, Dehghani, Shamshirband, & Mosavi, 2020).
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An artificial neural network generally consists of one to several
layers, one input, some hidden and one output (Béjar, Valeriano,
Ilachoque, & Sulla, 2016), as shown in Figure 4, where each layer has
several neurons that receive inputs from the previous or external layer
and convert them into an output or input signal to be used by other
neurons in the next layer (Laqui-Vilca, 2010).

Input layer Hidden layer Qutput layer
y1(p)

Xi(P) — ([ 1} 41
ya(p)

2

I
N

E <N\ )/ 20 3
’4"‘\\ " ()=t
:g_ x.-(p)4© { ::%
YnH(P)
Xnt () ———— n
x1(p)
Yi(p)
x2(p) o
z f ‘<
Xi(p) —»—
Xni(P)

Figure 4. Three-layer ANN architecture (input, hidden and output) (Hu
et al., 2018).
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Neural network training

It is the learning process by which configurations are made to the NR, so
that the desired outputs are produced according to the inputs
(Rezaeianzadeh, Tabari, & Yazdi, 2014). As part of the training, the

weights wij are adjusted and should converge to consistent values.

Twelve variables were selected for training the neural network. The
first variable represents the hydrological flow corresponding to the
Racarrumi River measured in m3/s. The next 11 variables represent the
rainfall in 11 localities that generate tributaries to the Racarrumi River
measured in mm. The data set was constructed based on measurements
obtained from Senhami's hydrological and hydrometric stations located in
the localities near the Racarrumi River. Likewise, 10 958 records
corresponding to 30 years of flow and rainfall information were compiled
and treated, with maximum and minimum values as shown in Table 1.

The dataset incorporated numerical values.
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Table 1. Maximum and minimum values at hydrological and

hydrometric stations according to locality name.

N° Station Type Maximun Minimum
Estacién
o1 Racarrumi ) 358.541 m3/s 0.88 m3/s
Hidrologica
02 Chugur 207.73 mm
03 Udima 230 mm
04 Llama 203.08 mm
05 Chancay 248.95 mm
06 Tocmoche 110 mm
Estacién
07 Espinal ) 107 mm 0 mm
hidrometrica
08 Puchaca 150.20 mm
09 Cayalti 77.30 mm
10 Jayanca 120.80 mm
11 Lambayeque 71.30 mm
12 Reque 60.40 mm

al., 2020) the Long-Short Term Memory type Neural networks known as
(LSTM) network is special kind of recurrent neural network (RNN)
structure, overcoming the weakness of the traditional RNN to learn long-
term dependencies. The deep in time structure of LSTM enables it to lean

when to forget and how long to retain the state information through the

Based on previous works (Hu et al., 2018; Fan et al., 2020; Fu et

specially designed gates and memory cells as shown in Figure 5.

Open Access bajo la licencia CC BY-NC-SA 4.0
(https://creativecommons.org/licenses/by-nc-sa/4.0/)
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Figure 5. Learning process and neural network transfer functions
(Yaseen et al., 2020).
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LSTMs were used in this research because they allow modeling the
time dependence of water flow in the Racarrumi River. This is important
because the river flow can vary greatly over 30 years due to factors such
as rainfall, evaporation, and other climatic factors. The ability of LSTM
networks to retain long-term information allows them to model these
temporal dependencies and make accurate predictions of river flow,

allowing a return time (RT) of up to 1 000 years.

In addition, LSTM networks can learn from complex patterns in the
data, which means that they can identify nonlinear relationships between
variables that affect river flow, such as rainfall at the 11 locations that are

tributaries to the Racarrumi River.

In order to estimate the flow rate of the Racarrumi River, an output
variable was established in the LSTM Neural Network, whose value
represents the amount of flow in m3/s. The. The architecture of the
network was defined with an input layer of 12 neurons connected to the
input vector, 4 hidden layers with 50 LSTM neurons each and a dense
layer with a single neuron based on the RELU function, as shown in Figure
6.
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Figure 6. Neural Network Architecture based on LSTM.

The constructed model uses LSTM elements and a dense layer and

the Adaptive Moment Estimation (ADAM) optimization algorithm was also

selected because it is designed to autonomously adapt to the gradient

characteristics of the loss function being optimized. This means that ADAM

automatically adjusts the learning rate during training to adapt to

different conditions of the flow and precipitation data to avoid the

problems of falling into local minima of the loss function. Likewise, ADAM

uses a first- and second-order moving average of the gradients, which

allows it to efficiently handle the noise in the data during the Racarrumi

Open Access bajo la licencia CC BY-NC-SA 4.0
(https://creativecommons.org/licenses/by-nc-sa/4.0/)
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River flow estimation. The mathematical form of ADAM is shown in the

following equation:

Or1 =0 ——m,

Where:
6, = vector of weights at time t during training
a = learning rate
m, = estimate of the first moment of the gradient at time t
7, = estimate of the second moment of the gradient at time t

e = smoothing term to avoid division by zero

Results and discussion

Daily scale hydrometeorological information of the
Chancay Lambayeque river basin

Hydrometeorological information was collected from 01/01/1991 to
12/31/2020, that is, 30 years of records, for a total of 10958 daily data
for each station. Table 2 shows the 11 meteorological stations and one
hydrological station (No. 12), distributed throughout the basin, as well as
in the surrounding areas, which are expected to be part of the Pacific

slope, and in particular the Zonal Directorate No. 02 of SENAMHI, from
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which precipitation records were considered, the same that were

downloaded

from

its

database.

web:

https://www.senamhi.gob.pe/?p=descarga-datos-hidrometeorologicos.

Table 2. Stations used in rainfall-runoff modeling.

Elevation Geographic Coordinates
N° Station Basin Department
(msnm) || atitude (S) | Longitude (O)
Chancay
01 Chugur Cajamarca 2742 60 40’ 10.02" 78044'17.06"
Lambayeque
02 Udima Zafia Cajamarca 2 466 6948'53.08" 79905'37.56"
Chancay
03 Llama Cajamarca 2 096 6°30'51.95" 7907'21.43"
Lambayeque
Chancay Chancay
04 . Cajamarca 1639 6034'29.61" 78052'1.96"
Banos Lambayeque
05 Tocmoche La Leche Cajamarca 1399 6°24'36.33" 79021'20.58”
06 El espinal Zafa Lambayeque 409 6049'3.1" 79012'5.8"
07 Puchaca La Leche Lambayeque 336 602225" 79028'10.25”
08 Cayalti Zafa Lambayeque 90 6052'50.86" 79032'49.25"
09 Jayanca Motupe Lambayeque 78 6019'53.73" 79046'7.29”
Chancay
10 Lambayeque Lambayeque 18 6°44'3.75" 79054'35.4”
Lambayeque
Chancay
11 Reque Lambayeque 13 6053’10.07" 79050'7.8"
Lambayeque
Chancay
12 Racarrumi Lambayeque 254 6037'59.68" 79018'35.14"
Lambayeque
112

Open Access bajo la licencia CC BY-NC-SA 4.0
(https://creativecommons.org/licenses/by-nc-sa/4.0/)

Tecnologia y ciencias del agua, ISSN 2007-2422,
15(6), 95-141. DOI: 10.24850/j-tyca-2024-06-03



https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-06-03&amp;domain=pdf&amp;date_stamp=2024-11-01

W) Check for updates

Tecnologiay %"

—_—
[T}

CienciaszAgua

Likewise, hydrometric information from the "Racarrumi" station was
used, data available at:

http://www.peot.gob.pe/tinajones/busca_tin_inf.php

The type of neural networks used were the recurrent ones, the same
that are usually used for time series prediction (Abbot & Marohasy, 2014),

in this sense, the modeling was divided into five stages.

Stage 01: Data pre-processing

As part of this stage, Figure 7 details the import of libraries; Numpy, with

which the calculation and numerical analysis of the data was performed.

# Import of libraries.

import numpy as np #Library for numerical processing.

import pandas as pd #Library to generate tables.

import matplotlib.pyplot as plt #Library for plotting.

import seaborn as sns #Data correlation library.

from google.colab import drive #Library to import data from Google Drive
drive.mount (" /content/drive")

Figure 7. Libraries used for modeling in Python.

The Pandas library was used to filter the columns to be used from
the tables, visualizing the records of the hydrometeorological stations
shown in Figure 8.
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# Import the data set (dataset).
dataset = pd.read excel("/content/drive/MyDrive/ChancayL.xlsx", sheet name="ChancayL CcP_19912020", index col=0)
dataset

o
9

Racarrumi Chugur Udima Llama ChancayB Tocmoche Espinal Puchaca Cayalti Jayanca Lambayeque Reque %
Fecha
1991-01-01 33.270 0.3 0.0  0.000000 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0
1991-01-02 26.470 2.0 0.0  0.000000 0.0 0.0  0.00000 0.000000 0.0 0.0 0.0 0.0
1991-01-03 21.960 3.3 0.0  0.000000 0.0 0.0 0.00000 0.000000 0.0 0.0 0.0 0.0
1991-01-04 19.410 0.0 0.0  0.000000 0.0 0.0  0.00000 0.000000 0.0 0.0 0.0 0.0
1991-01-05 18.370 0.0 0.0  0.000000 0.0 0.0  0.00000 0.000000 0.0 0.0 0.0 0.0
2020-12-27 62.801 0.0 0.0  0.000000 0.0 0.0 0.89044 0.278716 0.0 0.0 0.0 0.0
2020-12-28 57.460 0.0 0.0  0.000000 0.0 0.0 0.89044 0.278716 0.0 0.0 0.0 0.0
2020-12-29 48.770 0.0 0.0  0.000000 0.0 0.0 0.89044 0.278716 0.0 0.0 0.0 0.0
2020-12-30 41.386 0.0 0.0  0.000000 0.0 0.0 0.89044 0.278716 0.0 0.0 0.0 0.0
2020-12-31 34.818 10.6 0.0 10.507946 0.0 0.0 0.89044 0.278716 0.0 0.0 0.0 0.0

10958 rows x 12 columns

Figure 8. Pandas library application.

With the Matplotlib library, the graphs were created as shown in
Figure 9.
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Figure 9. Precipitation histograms plotted with the Matplotlib library.

Finally, Seaborn was used to perform the numerical correlations

between hydrometeorological stations as shown in Figure 10.
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Figure 10. Hydrograph of flow rates recorded at "Racarrumi” station,
period 01/01/1991 - 12/31/2020; plotted with the Matplotlib library in

Python.

Figure 11 and Figure 12 show the correlation between the stations,

showing that those that are close to each other, or are at a similar

elevation, have values close to 1.0, as is the case of the stations Chugur

and Chancay Bafios (nearby stations), or the stations Lambayeque and

Reque (similar elevation).
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Figure 11. Correlation diagram generated with the Seaborn library and

the Matplotlib library in Python.
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Jayanca - 10958.000000 o
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25%
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Figure 12. Statistical summary of hydrometeorological records

generated with the Seaborn library and the Matplotlib library in Python.

Figure 13 below shows the code used to define the data for model
training (80 % of the information), i.e., the station records from
01/01/1991 to 12/31/2014.
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# The training dataset is imported.

dataset_train =
training_set

training_set

array([[3.

32700000e+01,

0.00000000e+00,

[2.
0.
[2.
0.
(6.
2.
(5.
1.
[4.
1.

64700000e+01,
00000000e+00,
19600000e+01,
00000000e+00,

¥

20670000e+01,
12191045e-01,
28580000e+01,
65088375e-01,
15230000e+01,
65088375e-01,

.00000000e-01,
.00000000e+00,
.00000000e+00,
.00000000e+00,
.30000000e+00,
.00000000e+00,

.32560844e401,
.07557714e-01,
.80588760e+01,
.20379846e-02,
.32560844e+01,
.20379846e-02,

dataset_train.iloc]:,

pd.read_excel("/content/drive/MyDrive/ChancayL.xlsx",

sheet name="ChancayL CCP19912014")

.00000000e+00,
.00000000e+007,
.00000000e+00,
.00000000e+007,
.00000000e+00, ...
.00000000e+007,

.17965126e+00, ...
.00000000e-01],
.40026379e+00, ...
.00000000e+00],
.17965126e+00, ...
.00000000e+00]])

“uy

1:13].values

Figure 13. Code for the import of hydrometeorological records used in

model training.

Subsequently, Figure 14 shows the scaling of the training data with

the "MinMaxScaler" function, so these values ranged between 0 and 1.

LMD 024, Instituto Mexicano de Tecnologia del Agua.
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# Scale the features.
from sklearn.preprocessing import MinMaxScaler

# The scaler is saved so that the "fit" function can be used later.
sc = MinMaxScaler(feature_range = (0, 1))

# The "fit" function is applied to the scaling performed and the values are transformed.
training set scaled = sc.fit transform(training set)
training set_scaled

array([[0.09056061, 0.0018826 , 0. . eees 0L , 0. \
0. 1.
[0.0715482 , 0.01255066, 0. , eees 0. , 0. \
0. 1.
[0.05893849, 0.02070858, 0. , eees O , 0. ,
0. 1.
ens
[0.1710754 , 0.08318629, 0.03991153, ..., 0.00220344, 0.00150852,
0.00662252],
[0.14532756, 0.11332538, 0.03652289, ..., 0.00171431, 0.00044934,
0. 1.
[0.11363554, 0.08318629, 0.03991153, ..., 0.00171431, 0.00044934,

0. 1

Figure 14. Transformation of values of hydrometeorological records

used in model training.

Figure 15 details the creation of a data structure with 60 time steps,
i.e., every 60 days, and with 12 rows representing the number of
hydrometeorological stations, thus creating "arrays" for each of the
station data used for the prediction. It is worth mentioning that only one
matrix was defined for the case of flow rates, since only one flow station

was considered in this study, which was called "and train".
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# We create a data structure with 60 timesteps and 12 outputs of "n" rows with 60 days length for each variable.
# An array is created for each variable to be used for prediction.
Racarrumi_train = []

Chugur_train = []

Udima_train [1

Llama_train [1

ChancayB_train = []

Tocmoche_train = []

Espinal_train = []

Puchaca_train = []

Cayalti train = []

Jayanca_train = []

Lambayeque_train = []

Reque_train = []

Figure 15. Code designed for the creation of the matrices containing

the hydrometeorological records used in the training of the model.

Then with the Numpy library the data was resized, so a dimension
was added to each variable shown in Figure 16 to be the size of (8 706,
60, 1); i.e. 8 706 rows and 60 columns.

# The data is resized. We also add a dimension to each variable so that they are of size (8706, 60, 1).
Racarrumi_train_reshaped = np.reshape(Racarrumi_train, (Racarrumi_train.shape[0], Racarrumi_train.shape[l], 1))
Chugur_train reshaped = np.reshape(Chugur_train, (Chugur train.shape[0], Chugur train.shape[l], 1))

Udima_train reshaped = np.reshape(Udima_train, (Udima_train.shape[0], Udima_train.shape[l], 1))

Llama train reshaped = np.reshape(Llama train, (Llama_train.shape[0], Llama_train.shape[1], 1))
ChancayB train reshaped = np.reshape(ChancayB train, (ChancayB_train.shape[0], ChancayB_train.shape[l], 1))
Tocmoche_train reshaped = np.reshape(Tocmoche train, (Tocmoche train.shape[0], Tocmoche train.shape[1l], 1))
Espinal_train reshaped = np.reshape(Espinal_train, (Espinal_train.shape[(], Espinal_train.shape[l], 1))
Puchaca_train reshaped = np.reshape(Puchaca train, (Puchaca_train.shape[(], Puchaca_train.shape[l], 1))
Cayalti_train reshaped = np.reshape(Cayalti train, (Cayalti_train.shape[(], Cayalti_train.shape[l], 1))
Jayanca_train reshaped = np.reshape(Jayanca train, (Jayanca_train.shape[(], Jayanca_train.shape[l], 1))
Lambayeque_train reshaped = np.reshape(Lambayeque train, (Lambayeque train.shape[0], Lambayeque train.shape[l], 1))
Reque_train reshaped = np.reshape(Reque_train, (Reque train.shape[0], Reque_train.shape[l], 1))

Figure 16. Code designed for the resizing of the data used in the

training of the model.
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Finally, stage 01 of the data pre-processing ends with the creation
of a single matrix of size (8 706, 60, 12) shown in Figure 17, where 8 706
is the number of rows, 60 the number of columns in which each data set
was grouped, and 12 the number of stations; 11 pluviometric and 01

hydrometric (Racarrumi).

# The array is created which will result in an array of the size of (8706, 60, 12).
X_train = np.append(Racarrumi_train_reshaped, (Chugur_train_reshaped), axis = 2)
X_train = np.append(x_train, (Udima_train reshaped), axis = 2)

X _train = np.append(x train, (Llama train reshaped), axis = 2)

X _train = np.append(x_train, (ChancayB train reshaped), axis = 2)

X_train = np.append(x_train, (Tocmoche train reshaped), axis = 2)

X_train = np.append(x_train, (Espinal_train reshaped), axis = 2)

X _train = np.append(x_train, (Puchaca_ train reshaped), axis = 2)

X _train = np.append(x_train, (Cayalti train reshaped), axis = 2)

X_train = np.append(x_train, (Jayanca train_reshaped), axis = 2)

X_train = np.append(x_train, (Lambayeque_train_reshaped), axis = 2)
X _train = np.append(x train, (Reque_train reshaped), axis = 2)
X_train

Figure 17. Code designed for the resizing of the data used in the

training of the model.

Stage 02: Construction of the Recurrent Neural Network
(RNN)

As part of this stage, the Keras library was imported with which the neural
network modeling was carried out, and the Dense function was used to

define the number of layers and neurons in the model, the LSTM function
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was used to define the type of neural networks, and the Dropout function

was used to define the output layer.

Figure 18 shows the neural network created by 04 layers, where the
first, second, third and fourth were made up of 50 neurons each; while

the output layer consisted of 01 neuron that represented the output flows.

# The first LSTM layer and the regularization by "Dropout" are added.

model.add(LSTM(units = 50, return sequences = True, input_shape = (x_train.shape[l], x train.shape[2])))

model .add (Dropout(0.2))

# The second LSTM layer and the regularization by "Dropout" are added.
model.add(LSTM(units = 50, return sequences = True))
model .add (Dropout(0.2))

# The third LSTM layer and the regularization by "Dropout" are added.
model.add(LSTM(units = 50, return sequences = True ))
model .add(Dropout(0.2))

# The fourth LSTM layer and the regularization by "Dropout" are added.
model.add(LSTM(units = 50))
model .add(Dropout(0.2))

# the output layer is placed.
model.add(Dense(units = 1))

# Execution of the Recurrent Neural Network (RNN).
model.compile(optimizer = 'adam', loss = 'mean squared error')

Figure 18. Layer and neuron encoding of the NN.

The "Adam" model was used as optimizer and the "mean square

error" was used for the losses. Figure 19 shows that 32 epochs were

123

Tecnologia y ciencias del agua, ISSN 2007-2422,

Open Access baJo la Ilcenma CC BY-NC-SA 4.0 15(6), 95-141. DOI: 10.24850/j-tyca-2024-06-03
(https://creativecommons.org/licenses/by-nc-sa/4.0/)



https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-06-03&amp;domain=pdf&amp;date_stamp=2024-11-01

Tecnologia y

CienciaszAgua

W) Check for updates

defined for training the neural networks, i.e. 32 simultaneous runs, while

80 % of the information (24 years of daily records) was taken as data.

# The RNN is adjusted to the training set, it should be noted that 80% of the 30 years of records were taken for
model.fit(x_train, y_train, epochs

Epoch 1/100

273/273 | ] - 40s
Epoch 2/100

273/273 [ ] - 35s
Epoch 3/100

273/273 | ] - 33s
Epoch 4/100

273/273 [ ] - 31s
Epoch 5/100

273/273 | ] - 33s
Epoch 6/100

273/273 [ ] - 31s
Epoch 7/100

273/273 | ] - 35s
Epoch 8/100

273/273 [ ] - 33s
Epoch 9/100

273/273 | ] - 31s
Epoch 10/100

273/273 [ ] - 33s
Epoch 11/100

273/273 | ] - 31s
Epoch 12/100

273/273 [ ] - 33s

= 100, batch_size

1léms/step
128ms/step
122ms/step
115ms/step
122ms/step
115ms/step
128ms/step
122ms/step
115ms/step
121ms/step
1l4ms/step

122ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.

0.

0.

0051

0026

0018

L0015

L0014

L0012

L0012

L0011

L0011

L0010

L0010

L0011

= 32)

Figure 19. Neural network model training.

Stage 03: Adjust predictions and visualize results

As part of this stage, Figure 20 shows the import of the observed flows

considered for the model validation stage, i.e. 06 years of daily records,
namely from 01/01/2015 to 12/31/2020 (20 % of the total information).

Open Access bajo la licencia CC BY-NC-SA 4.0
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# The flow rates observed at the "Racarrumi" hydrometric station from 01/01/2015 to 31/12/2020 (2192 data)
dataset_test = pd.read excel("/content/drive/MyDrive/ChancayL.xlsx", sheet name="Racarrumi20152020")
caudales_racarrumi 20152020 = dataset test.iloc[:, 1:2].values

caudales racarrumi 20152020

array([[40.821],
[38.508],
[39.18 ],
[48.77 1,
[41.386],
[34.818]])

Figure 20. Import of observed flow rates for model validation.

Taking the precipitation and flow data, the prediction of these was
carried out, considering the last 06 years of record. For this purpose, as
in the training stage, the flow rates were scaled between 00 and 01 as

shown in Figure 21.

# Flow prediction is performed with the RNR from 01/01/2015 to 12/31/2020 (2192 data).
dataset total = pd.concat((dataset train[['Racarrumi', 'Chugur', 'Udima', 'Llama', 'ChancayB', 'Tocmoche', 'Espinal
inputs = dataset total[len(dataset total) - len(dataset_test) - 60:].values

# The scaler is used for the data set to which the fit was applied to generate the training data set "x train".
inputs = sc.transform(inputs)

inputs

array([[0.02300223, 0.08318629, 0.03991153, ..., 0.00171431, 0.00044934,
0. 1.
[0.02744498, 0.08318629, 0.03991152, ..., 0.00171431, 0.00044934,
0. 1s
[0.03443484, 0.08318629, 0.03991152, ..., 0.00220344, 0.00150852,
0.00662252],
cees
[0.13389774, O. , 0. foeees OL , 0. ,
0. 1s
[0.11325249, 0. . 0. s oeeas 0. , 0. f
0. 1s
[0.09488874, 0.06651848, 0. s oeeay 0. , 0. '

0. 11
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In this sense, Figure 22 and Figure 23 shows the creation of the
data set for the validation "x_test" with the variables of the training (test)
data set and the lists were converted with the Numpy library to a single
array, whose size was 2 192 rows by 60 columns containing the data from
the 12 hydrometeorological stations.

# Creation of the data set for validation "x test" with the variables of the training (test) data set.
# Creation of the data structure with 60 timesteps and 1 output.
Racarrumi_test = []

Chugur_test = []

Udima_test = []

Llama_test = []

ChancayB_test [1]

Tocmoche test []

Espinal_test = []

Puchaca_test = []

Cayalti test [1

Jayanca_test []

Lambayeque_test = []

Recue test = [1

Figure 22. Creation of the data set for validation "x_test".

# An array of size (2192, 60, 12) is created.

x_test = np.append(Racarrumi_test reshaped, (Chugur_test_reshaped), axis = 2)
x_test = np.append(x_test, (Udima_ test reshaped), axis = 2)

X test = np.append(x_test, (Llama test reshaped), axis 2)

X test = np.append(x_test, (ChancayB test reshaped), axis = 2)
Xx_test = np.append(x_test, (Tocmoche test reshaped), axis 2)
x_test = np.append(x_test, (Espinal_test_reshaped), axis = 2)
Xx_test = np.append(x_test, (Puchaca_test_reshaped), axis = 2)

X _test = np.append(x_test, (Cayalti_test reshaped), axis 2)

X _test = np.append(x_test, (Jayanca test reshaped), axis = 2)
Xx_test = np.append(x_test, (Lambayeque_test_ reshaped), axis = 2)
x_test = np.append(x_test, (Reque_ test_reshaped), axis = 2)
X_test

Figure 23. Code for the creation of a single array for model validation.
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Figure 24 shows the flow prediction from 01/01/2015 to
12/31/2020, with those that were validated in the model and where later
in Figure 25 we visualize the code with the Matplotlib library prior to the

results shown in Figure 26 in hydrographs.

# Flow forecasting is performed from 01/01/2015 to 12/31/2020 (2192 data).
predicted caudales_racarrumi 20152020 = model.predict(x test)

# Number of data
predicted caudales racarrumi 20152020.shape

Figure 24. Code for flow prediction with which the model was validated.

# Finally, the results are displayed.

plt.fiqure(figsize=(25,9)) #Window size.

plt.plot(caudales racarrumi 20152020[:, 0], color = 'red', label = 'Observed flow rates of Racarrumi Est. from 01/0
plt.plot(Q_simulados, color = 'blue', label = 'Simulated flow rates of Racarrumi Est. from 01/01/2015 to 12/31/2020
plt.title("Prediction with an RNN of the Racarrumi Est. flows, year 2015 to 2020.")

plt.xlabel("Date (Years 2015-2020)")

plt.ylabel("Simulated and observed flow rates at Racarrumi Station")

plt.legend()

plt.show()

Figure 25. Coding with the Matplotlib library for visualization of results.
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Simulated and observed flow rates at Racarrumi Station
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Prediction with an RNN of the Racarrumi Est. flows, year 2015 to 2020.

—— Observed flow rates of Racarrumi Est. from 01/01/2015 to 12/31/2020.
— Simulated flow rates of Racarrumi Est. from 01/01/2015 to 12/31/2020

NSE 0.93

0 500 1000 1500 2000

Date (Years 2015-2020)

Figure 26. Hydrographs of observed flows (red) and simulated flows
(blue), with an NSE index of 0.93.

In this study, the metric to evaluate the performance of
hydrological modeling (Asurza, Ramos, & Lavado W, 2018) is the Nash-

Sutcliffe efficiency (NSE). The procedure for calculating this metric is as

follows:
n ' \2
ieai =y
NSE =1-33 ——
i=1(Vi =)
Where
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y; and y'; = denote the observed and simulated runoff at time i
y = denote the average observed and simulated runoff at time i

After modeling rainfall runoff in the Chancay Lambayeque river
basin, we proceeded to evaluate its performance, obtaining an NSE of

0.93, guaranteeing the reliability of the modeling, as shown Figure 27.

o Nash Sutcliffe Efficiency

» Model -= 1:1 Slope
400 S

NSE =0.93

Model

100 200 300
Obs

Figure 27. Scatter plot of the Nash Sutcliffe-NSE efficiency index.
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Determination of flow rates for different return periods

W) Check for updates

in the hydrological station "Bocatoma Racarrumi”

located in the middle part of the Chancay Lambayeque

We proceeded first to determine the goodness of fit using the
Kolmogorov-Smirnok (SK) test, obtaining that the flow rates conform to
the statistical distributions (Atheoretical < Atabular): Normal Distribution
(N), Log. Normal 2 Parameters (LN 2P), Log. Normal 3 Parameters (LN
3P), Gumbel (G) and Gamma 2 Parameters (G 2P), as shown in Table 3.

Table 3. Kolmogorov-Smirnok (SK) goodness-of-fit test for observed

river basin

annual peak flows.

Models Atheoretical Atabular Condition
DN 0.1087 0.2483 Atesrico < Atabular
LN 2P 0.0943 0.2483 Atesrico < Atabular
LN 3P 0.0958 0.2483 Atesrico < Atabular
Gumbel 0.0762 0.2483 Ateérico < Atabular
Gamma 2P 0.0999 0.2483 Atesrico < Atabular

Once the goodness-of-fit analysis was performed, the design flows
for different return periods were determined, for which the Gumbel
methodology was chosen since it presents the lowest Atheoretical A with
respect to the other statistical differences (Normal, LN2P, LN3P and

Gumbel). In this sense, as can be seen in Table 4, there are different

Open Access bajo la licencia CC BY-NC-SA 4.0
(https://creativecommons.org/licenses/by-nc-sa/4.0/)
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flows for different return periods. It should be noted that only those

obtained by the Gumbel method are presented since, if we look at Table

3, it is the one that best adjusts to the real flows, obtaining a smaller

statistical difference with respect to the other models.

Table 4. Maximum flows for different return periods, calculated by the

Gumbel method and plotted in Figure 28.

N° Tr (Years) Qmax (Mm3/s)
01 5 289.78
02 10 333.64
03 25 391.62
04 50 435.48
05 100 479.34
06 200 523.20
07 1 000 625.03
Discussion

The implementation of artificial intelligence techniques in hydrology is of

utmost importance, particularly for rainfall-runoff modeling; in this sense,

we share what is referred by Mosavi et al. (2018), who indicate that these

techniques allow optimizing the results of the simulations, specifically by

achieving that the simulated variables resemble the observed ones, this

is also corroborated by goodness-of-fit metrics such as the Nash Sutcliffe

Open Access baJo la IlcenC|a CC BY-NC-SA 4.0
(https://creativecommons.org/licenses/by-nc-sa/4.0/)
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Coefficient shown in Figure 28, which in the present research is 0. 93, i.e.

the modeling is "very good".

: —@— Observados
= Gumbe|
{ | === Gamma 2P

Maximum flowsim3/s)

1 10 100 1000

Return periods (Years)

Figure 28. Design flows obtained by the statistical methods of "Gumbel

and 2-parameter Gamma" for different return periods.

It should be noted that the most widely used artificial intelligence
techniques for rainfall-runoff modeling and simulation of hydrological

processes are artificial neural networks, as referred to by Lujano, Lujano,
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Pitdgoras and Lujano (2014), who indicate that with innovative
programming languages they can be coded with much greater versatility,
obtaining results with different types of networks and/or models that have
been previously defined, namely, with ANN models that one has

programmed or downloaded from servers such as Scikit-Learn or GitHub.

On the other hand, Farfan et al. (2020), as part of a modeling
carried out with WEAP and GR2M models in the Machangara and Chulco
rivers, obtained NSE coefficients of 0.64 and 0.88 respectively; these
results were later processed with artificial neural networks, obtaining NSE
coefficients of 0.99 in both rivers. In this line, we subscribe to what was
presented by the authors, indicating that in the present research, after
having carried out the modeling of rainfall runoff in the Chancay

Lambayeque river basin, a coefficient close to 1.00 (0.93) was obtained.

The type of neural networks used in this research were the LSTM
(Long Short-Term Memory) networks, due to their versatility and better
accuracy when simulating flows, as described by Hu et al. (2018) in their
study, who used Long and Short-Term Memory Networks (LSTM); to
simulate rain-runoff in the Fen River basin (China), having obtained an
NSE of 0.90 in the validation stage. For rainfall-runoff modeling in the
Chancay Lambayeque river basin, records from 12 hydrometeorological
stations with a total of 30 years (hydrological normal) were used; while

Hu et al. (2018) used records from 14 stations for a period of 43 years.

Fan et al. (2020) indicate that among the most widely used deep
learning techniques for the simulation of hydrometeorological variables,
Long and Short Term Memory Networks (LSTM) stand out for their
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versatility, and are currently being implemented with other techniques to

generate hybrid models and thus obtain better results.

Regarding the flows obtained for different return periods, Tineo-
Pongo (2018) as part of the application of a distributed hydrological model
called TETIS, used 26 years of records from the hydrological station
"Racarrumi”, thus obtained by the Gumbel method that for a Tr of five
years the maximum flow was 286. 09 m3/s; for a Tr of 50 years it was
442.77 m3/s; for a Tr of 100 years it was 489.93 m3/s, and for a Tr of 1
000 vyears it was 646.60 m3/s. Along these lines, in the present
investigation, having used 30 years of daily precipitation and flow records,
it was obtained that for a 5-year Tr the maximum flow was 289.78 m?3/s;
for a 50-year Tr it was 435.48 m3/s; for a 100-year Tr it was 479.34 m3/s,
and for a 1 000-year Tr it was 625.03 m3/s.

Finally, we agree with Young, Liu and Chung (2015) who indicate
that network models allow simulating and predicting hydro-
meteorological variables with greater accuracy, for example, runoff
simulation with automatic and/or deep learning techniques allow
generating information where it does not exist, from small to large basins,
so that the data generated could be used for hydraulic modeling and to

define flood zones associated with different return periods.

Conclusions

This study analyzed the daily scale hydrometeorological data available in
the Chancay Lambayeque river basin, namely 30 years (hydrological
normal), from 01/01/1991 to 12/31/2020, where 80 % (24 years) of the

134

Tecnologia y ciencias del agua, ISSN 2007-2422,

Open Access bajo la licencia CC BY-NC-SA 4.0 15(6), 95-141. DOI: 10.24850/j-tyca-2024-06-03

(https://creativecommons.org/licenses/by-nc-sa/4.0/)


https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2024-06-03&amp;domain=pdf&amp;date_stamp=2024-11-01

) g X« oty W) Check for updates
Tecnologiay %=

CienciastAgua

data were used for model training, while the remaining 20 % (six years)

were used for validation.

Initially, the calibration and subsequent validation of the neural
network model for rainfall-runoff simulation in the Chancay Lambayeque
river basin was carried out using Long and Short Term Memory Networks
(LSTM), thus obtaining a Nash coefficient of 0.93 in the model validation

stage, corresponding to the qualification of "very good".

Table 3 shows the maximum flows determined for different return
periods (Tr) at the hydrological station "Bocatoma Racarrumi" located in
the middle part of the Chancay Lambayeque river basin, thus calculating
flows for Tr of 05, 10, 25, 50, 50, 100, 200 and 1 000 years, as can be

seen in the table.

Finally, according to the determination of flow rates for different
return periods at the Racarrumi intake hydrological station, for a return
period; for example, a flow rate of 435.48 m3/s for 50 years and 479.34
m3/s for 100 years. According to historical data from 1991 to 2021, the
Chancay Lambayeque River has had a maximum flow of 358.54 m3/s
recorded on March 27, 2009 (Record obtained at the Racarrumi station).
The flows obtained from the different return periods, it is considered that
the Racarrumi Intake can alleviate these flows, since this work has been

designed for flows greater than 500 m3/s.
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