Thermal analysis of greenhouses to crops reconvertion in a warm zone in Michoacan

Authors

DOI:

https://doi.org/10.24850/j-tyca-14-05-04

Keywords:

Computational fluid dynamics, degrees days heat, tomato, thermal comfort

Abstract

Recently apparition of diseases in the blackberry crop (Rubus subgenre Eubatus) in Los Reyes Michoacan, Mexico, has gotten economic decreases. Soil-climatic conditions, erratic plus laborer crop and climatic change, have favored root rot, ceasing to cultivate them with economic losses like 2 540 million Mexican pesos per year (125 million USD). This work aimed to analyze thermal variability to know the alternative to cultivating tomatoes in a hydroponic greenhouse system. Normal data meteorological base and numerical fluid simulation (CFD) were used to feed computational models for analyzing the environment of two typical greenhouses in Mexico. The numerical models were evaluated through a one-way ANOVA analysis with p £ 0.5. Results show that the temperature in the greenhouse is kept between the maximum and minimum threshold for tomato cultivation (10 to 30 °C). To accumulate 1 398.5 Degrees Heat Days (DHC) recommended per cycle, it is feasible to store heat to grow three short tomato cycles in that region. Critical periods are identified due to high temperatures in March to June, during which natural ventilation is required with front, overhead and side windows to improve the air renewal rate when there is a change in the prevailing wind direction.

References

Aguilar-Rodríguez, C. E., Flores-Velázquez, J., Rojano-Aguilar, F., Ojeda-Bustamante, W., & Iñiguez-Covarrubias, M. (2020a). Estimación del ciclo de cultivo de tomate (Solanum lycopersicum L.) en invernadero, con base en grados días calor (GDC) simulados con CFD. Tecnología y ciencias del agua, 11(4), 38-68. DOI: https://doi.org/10.24850/j-tyca-2020-04-02

Aguilar-Rodríguez, C. E., Flores-Velázquez, J., Ojeda-Bustamante, W., Rojano-Aguilar, F., & Iñiguez-Covarrubias, M. (2020b). Valuation of the energy performance of a greenhouse with an electric heater using numerical. Processes, 8(5), 1-13. DOI https://doi.org/10.3390/pr8050600

Ardila, G., Gustavo-Fischer, G., & Balaguera-López, H. E. (2011). Caracterización del crecimiento del fruto y producción de tres híbridos de tomate (Solanum lycopersicum L.) en tiempo fisiológico bajo invernadero. Revista Colombiana de Ciencias Hortícola, 5(1), 44-56. DOI: https://doi.org/10.17584/rcch.2011v5i1.1252

Bartzanas, T., Boulard, T., & Kittas, C. (2004). Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering, 88, 479-490.

Baxevanou, C., Fidaros, D., Bartzanas, T., & Kittas, C. (2018). Yearly numerical evaluation of greenhouse cover materials. Computers and Electronics Agriculture, 149, 54-70. DOI: https://doi.org/10.1016/j.compag.2017.12.006

Bouhoun-Ali, H., Bournet, P. E., Cannavo, P., & Chantoiseau, E. (2017). Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics Agriculture, 149, 26-40. DOI: https://doi.org/10.1016/j.compag.2017.06.021

Boulard, T., Roy, J. C., Pouillard, J. B., Fatnassi, H., & Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems Engineering, 158, 110-133. DOI: https://doi.org/10.1016/j.biosystemseng.2017.04.001

Bournet, P., & Boulard, T. (2010). Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Computer and Electronic Agriculture, 74, 195-217.

Castilla, N. (2004). Invernaderos de plástico. Tecnología y manejo (2a ed.). Madrid, España: Editorial Mundiprensa.

Cemek, B., Atiş, A., & Küçüktopçu, E. (2017). Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu Journal of Agricultural Sciences, 32, 54-54. DOI: https://doi.org/10.7161/omuanajas.289354

Chu, C. R., Lan, T. W., Tasi, R. K., Wu, T. R., & Yang, C. K. (2017). Wind-driven natural ventilation of greenhouses with vegetation. Biosystems Engineering, 164, 221-234. DOI: https://doi.org/10.1016/j.biosystemseng.2017.10.008

Contreras-Pérez, M., Santoyo-Pizano, G., De-los-Santos-Villalobos, S., Gutiérrez-García, M. A., Orozco-Mosqueda, M. C., & Rocha-Granados, M. C. (2019). First report of La¬siodiplodia on blackberry plants (Rubus subgenus Euba¬tus) in the Michoacan state, Mexico. Mexican Journal of Phytopathology, 37(3), 1-7.

Doorenbos, J., & Pruitt, W. O. (1977). Crop water requirements (paper 24). Roma, Italia: Food and Agriculture Organization.

Fernández-Pavía, S. P., Rodríguez-Alvarado, G. R., Gómez-Do¬rantes, N., Gregorio-Cipriano, M. R., & Fernández-Pavía, Y. L. (2012). Enfermedades en plantas en el estado de Michoacán. Biológicas, 14(2), 75-89.

Fisher, R. A. (1971). Statistical methods for research workers. Biometrics, 27, 1106. DOI: https://doi.org/10.2307/2528855

Haxaire, R. (1999) Caractérisation et Modélisation des écoulements d’air dans une serre (Thèse de Docteur en Sciences de l’Ingénieur), Université de Nice, Sophia Antipolis, 148 pp.

Kuroyanagi, T. (2017). Investigating air leakage and wind pressure coefficients of single-span plastic greenhouses using computational fluid dynamics. Biosystems Engineering, 163, 15-27. DOI: https://doi.org/10.1016/j.biosystemseng.2017.08.004

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.

Lee, S. Y., Lee, I. B., & Kim, R. W. (2018). Evaluation of wind-driven natural ventilation of single-span greenhouses built on reclaimed coastal land. Biosystems Engineering, 171, 120-142. DOI: https://doi.org/10.1016/j.biosystemseng.2018.04.015

Mesmoudi, K., Meguallati, K. H., & Bournet, P. E. (2017). Effect of the greenhouse design on the thermal behavior and microclimate distribution in greenhouses installed under semi-arid climate. Heat Transfer - Asian Research, 46(8), 1294-1311. DOI: https://doi.org/10.1002/htj.21274

Ntinas, G. K., Shen, X., Wang, Y., & Zhang, G. (2017). Evaluation of CFD turbulence models for simulating external airflow around varied building roof with wind tunnel experiment. Building Simulation, 11(5), 115-123. DOI: https://doi.org/10.1007/s12273-017-0369-9

Rangel, R. J., & Silvas, J. R. (1987). Fenología del tomate en tres fechas de siembra. Avances de instigación en hortalizas en el estado de Sinaloa. SARH-INIFAP-CAEVACU, 12, 45-47.

Rodríguez, W., & Flórez, V. (2006). Comportamiento fenológico de tres variedades de rosas rojas en función de la acumulación de la temperatura. Agronomía Colombiana, 24, 247-257.

Sagarpa, Secretaría de Agricultura y Desarrollo Rural. (2012). Sistema Producto Jitomate de Michoacán. Recuperado de https://bit.ly/PRJITOMATEMICHOACAN

Santolini, E., Pulvirenti, B., Benni, S., Barbaresi, L., Torreggiani, D., & Tassinari, P. (2018). Numerical study of wind-driven natural ventilation in a greenhouse with screens. Computers and Electronics in Agriculture, 149, 41-53. DOI: https://doi.org/10.1016/j.compag.2017.09.027

Senhaji, A., Majdoubi, H., Mouqalid, M., De, E., & Meknès, E. (2017). Solar distribution in a greenhouse at different crops orientation during production season. 13ème Congrès de Mécanique, 13-15.

Sethi, V. P. (2009). On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation. Solar Energy, 83, 21-38.

SIAP & Sagarpa, Servicio de Información Agro¬pecuaria y Pesquera- Secretaría de Agricultura, Ganadería y Pesca. (2019). Atlas agroalimentario 2018. Recuperado de https://nube.siap.gob.mx/ gobmx_publicaciones_siap/pag/2018/Atlas-Agroalimen¬tario-2018

Teitel, M., & Wenger, E. (2014). Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosystems Engineering, 119, 98-107.

Tesi, R. (2001). Medios de protección para la hortofloro-fruticultura y el viverismo. Madrid, España: Mundi-Prensa.

Tong, G., Christopher, D. M., & Zhang, G. (2018). New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149, 3-15. DOI: https://doi.org/10.1016/j.compag.2017.09.031

Trudgill, D. L., Honek, A., Li, D., & Van-Straaalen, N. M. (2005). Thermal time: Concepts and utility. Annals of Applied Biology, 146(1), 1-14. DOI: http://dx.doi.org/10.1111/j.1744- 7348.2005.04088

Zeroual, S., Bougoul, S., & Benmoussa, H. (2018). Effect of radiative heat transfer and boundary conditions on the airflow and temperature distribution inside a heated tunnel greenhouse. Journal of Applied Mechanics and Technical Physics, 59(6), 1008-1014. DOI: https://doi.org/10.1134/S0021894418060068

Zotarelli, L., Scholberg, J. M., Dukes, M. D., Muñoz-Carpena, R., & Icerman, J. (2009). Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agriculture Water Manage, 96, 23-34.

Published

2023-09-01

How to Cite

Aguilar-Rodríguez, C. E., Flores-Velázquez, J., & Urrieta-Velázquez, J. A. (2023). Thermal analysis of greenhouses to crops reconvertion in a warm zone in Michoacan. Tecnología Y Ciencias Del Agua, 14(5), 189–219. https://doi.org/10.24850/j-tyca-14-05-04