Geoestadística para integrar mediciones de campo con estimaciones satelitales adecuados para escala local
DOI:
https://doi.org/10.24850/j-tyca-15-01-02Keywords:
Bajo Grijalva, cuenca tropical, desescalamiento geoestadístico de datos, precipitación satelital, regresión krigingAbstract
En paÃses como México hacen falta más estaciones de medición de lluvia. Además, en la cuenca Grijalva, datos de solo tres o menos estaciones se integran en productos satelitales de misiones como Tropical Rainfall Monitoring Mission (TRMM) o Global Precipitation Mission (GPM). Aunque las misiones satelitales permiten obtener estimaciones de lluvia a un espaciamiento constante (p. ej., 11 km para GPM), esta resolución no es adecuada para gestión local. La integración de una mayor cantidad de datos de pluviómetros con valores de satélite aumentados de escala puede ser útil para obtener datos de precipitación de escala local. En este trabajo se aplicó kriging ordinario (OK) a los datos satelitales de precipitación (GPM y TRMM) agregados anualmente y regresión kriging (RK) para integrar los datos resultantes con datos de todos los pluviómetros disponibles. Los resultados de esta integración se compararon con los resultados de la interpolación de datos de pluviómetros utilizando OK y kriging universal (UK). Una interpolación del inverso de la distancia al cuadrado (IDW) se consideró como criterio de bajo desempeño. Los métodos de evaluación y de definición de similaridad fueron validación cruzada (Lou-CV), análisis de componentes principales, matriz de correlación y mapa de calor con análisis de conglomerados. OK funcionó bien para desescalar las estimaciones satelitales de GPM. La integración RK de datos de pluviómetros con datos de GPM desescalados con OK obtuvo los mejores parámetros de validación en comparación con las interpolaciones de mediciones de pluviométros. Los métodos geoestadísticos son prometedores para desescalar las estimaciones satelitales e integrarlas con todos los datos disponibles de pluviómetros. Los resultados indican que la evaluación usando parámetros para evaluar la efectividad de la interpolación usando datos medidos debe complementarse con métodos para definir similaridad entre las capas espaciales obtenidas. Este enfoque permite obtener datos de precipitación útiles para modelado y manejo del agua a nivel local.
References
Abdollahipour, A., Ahmadi, H., & Aminnejad, B. (2022). A review of downscaling methods of satellite-based precipitation estimates. Earth Science Informatics 15, 1-20. Recovered from https://doi.org/10.1007/s12145-021-00669-4
AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., & Amitai, E. (2011). Evaluation of satellite-retrieved extreme precipitation rates across the central United States. Journal of Geophysical Research, 116, 1-11. Recovered from https://doi.org/10.1029/2010jd014741
Agou, V. D., Varouchakis, E. A., & Hristopulos, D. T. (2019). Geostatistical analysis of precipitation in the island of Crete (Greece) based on a sparse monitoring network. Environmental Monitoring Assessment 191(353), 1-24. Recovered from https://doi.org/10.1007/s10661-019-7462-8
Anagnostou, E. N., Maggioni, V., Nikolopoulos, E. I., Meskele, T., Hossain, F., & Papadopoulos, A. (2010). Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Transactions Geosciences and Remote Sensing, 48, 1667-1683. Recovered from https://doi.org/10.1109/TGRS.2009.2034736
Bell, T. L. (2003). Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model. Journal of Geophysical Research, 108(D3)4121, 1-15. Recovered from https://doi.org/10.1029/2002JD002641
Berndt, C., Rabiei, E., & Haberlandt, U. (2013). Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios, Journal of Hydrology, 508, 88-101. Recovered from https://doi.org/10.1016/j.jhydrol.2013.10.028
Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2013). Applied spatial data analysis with R. New York, USA: Springer. Recovered from https://doi.org/10.1007/978-0-387-78171-6
Bowman, K.P. (2005). Comparison of TRMM P retrievals with rain gauge data from ocean buoys. Journal of Climate, 18(1), 178-190. Recovered from https://doi.org/10.1175/JCLI3259.1
Burgan, H. I., & Aksoy, H. (2022). Daily flow duration curve model for ungauged intermittent sub-basins of gauged rivers. Journal of Hydrology, 604, 127429. Recovered from https://doi.org/10.1016/j.jhydrol.2021.127249
Cepal & Cenapred, Centro Nacional de Prevención de Desastres & Comisión Económica para América Latina y el Caribe. (2008). Tabasco: características e impacto socioeconómico de las inundaciones provocadas a finales de octubre y a comienzos de noviembre de 2007 por el frente frÃo número 4. Informe LC/MEX/L.864. Recovered from https://repositorio.cepal.org/handle/11362/25881
Cersosimo, A., Larosa, S., Romano, F., Cimini, D., Di Paola, F., Gallucci, D., Gentile, S., Geraldi, E., Teodosio-Nilo, S., Ricciardelli, E., Ripepi, E., & Viggiano, M. (2018). Downscaling of satellite OPEMW surface rain intensity data. Remote Sensing, 10(11), 1763, 1-16. Recovered from https://doi.org/10.3390/rs10111763
Chen, F., Gao, Y., Yiguo, W., & Li, X. (2020). A downscaling-merging method for high-resolution daily precipitation estimation. Journal of Hydrology, 581(124414), 1-15. Recovered from https://doi.org/10.1016/j.jhydrol.2019.124414
Chen, S., Zhang, L., She, D., & Chen, J. (2019). Spatial downscaling of tropical rainfall measuring mission (TRMM) annual and monthly precipitation data over the middle and lower reaches of the Yangtze River Basin, China. Water, 11(3), 568. Recovered from https://doi.org/10.3390/w11030568
Conagua, Comisión Nacional del Agua. (2015). Estadísticas del agua en México. Recovered from https://agua.org.mx/biblioteca/estadisticas-del-agua-en-mexico-edicion-2015/
Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22, 239-252. Recovered from https://doi.org/10.1007/BF00889887
Curran, P. J., & Atkinson, P. M. (1998). Geostatistics and remote sensing. Progress in Physical Geography: Earth and Environment, 22(1), 61-78. Recovered from https://doi.org/10.1177/030913339802200103
Dumitrescu, A., Brabec, M., & Matreata, M. (2020). Integrating ground-based observations and radar data into gridding sub-daily precipitation. Water Resources Management, 34, 3479-3497. Recovered from https://doi.org/10.1007/s11269-020-02622-4
GPCC, Global Precipitation Climatology Centre. (2012). Number of stations used by GPC for May 2012. Recovered from https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
Gobierno de México. (November 12, 2020). Información de estaciones climatológicas. Recovered from https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica
GES DISC, Goddard Earth Sciences Data and Information Services Center. (2011). Tropical Rainfall Measuring Mission (TRMM) (2011), TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7. [Data file]. Recovered from https://doi.org/10.5067/TRMM/TMPA/MONTH/7
Goovaerts, P. (1997). Geostatistics for natural resource evaluation. New York, USA: Oxford University Press.
Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113-129. Recovered from https://doi.org/10.1016/S0022-1694(00)00144-X
Greene, J. S., & Morryssey, M. L. (2000). Validation and uncertainty analysis of satellite rainfall algorithms. Professional Geographer, 52(29), 247-258. Recovered from https://doi.org/10.1111/j.0033-0124.2000.t01-1-.x
Hengl, T. (2009). A practical guide to geostatistical mapping of environmental variables. Luxembourg, Luxembourg: European Communities, Publications Office. Recovered from http://spatial-analyst.net/book/system/files/Hengl_2009_GEOSTATe2c1w.pdf
Hengl, T., Gerard, B., Heuvelink, M., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computer and Geosciences, 33(10), 1301-1315. Recovered from https://doi.org/10.1016/j.cageo.2007.05.001
Holawe, F., & Dutter, R. (1999). Geostatistical study of precipitation series in Austria: Time and space. Journal of Hydrology, 219(1-2), 70-82. Recovered from https://doi.org/10.1016/S0022-1694(99)00046-3
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C. E., Nelkin, J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., & Xie, P. (2020). Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., & Turk, F. (eds.). Satellite precipitation measurement. Advances in global change research. Vol. 69 (pp. 3-23). Cham, Switzerland: Springer. Recovered from https://doi.org/10.1007/978-3-030-35798-6_1
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55. Recovered from https://doi.org/10.1175/JHM560.1
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2019). GPM IMERG final precipitation L3 half hourly 0.1 degree x 0.1 degree V06. GES DISC, Goddard Earth Sciences Data and Information Services Center. Recovered from https://doi.org/10.5067/GPM/IMERG/3B-HH/06
INEGI, Instituto Nacional de Estadística y Geografía. (2010). Red hidrográfica mexicana. Recovered from https://www.inegi.org.mx/temas/hidrografia/default.html#Descargas
Keblouti, M., Ouerdachi, L., & Boutaghane, H. (2012). Spatial interpolation of annual precipitation in Annaba-Algeria. Comparison and evaluation of methods. Energy Procedia, 18, 468-475. Recovered from https://doi.org/10.1016/j.egypro.2012.05.058
Kidd, C., Takayabu, Y. N., Skofronick-Jackson, G. M., Huffman, G. J., Braun, S. A., Kubota, T., & Turk, F. J. (2020). The global precipitation measurement (GPM) mission. Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., & Turk, F. (eds.). Satellite precipitation measurement. Advances in global change research. Vol. 69 (pp. 3-23). Cham, Switzerland: Springer. Recovered from https://doi.org/10.1007/978-3-030-24568-9_19
Knotters, M., Brus, D., & Voshaar, J. (1995). A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma, 67 (3-4), 227-246.
Kumar, V. (2007). Optimal contour mapping of groundwater levels using universal kriging—A case study. Hydrological Sciences Journal, 52, 1038-1050. Recovered from https://doi.org/10.1623/hysj.52.5.1038
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., Adler, R. F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W. S., Zipser, E., Smith, E. A., Wilheit, T. T., North, G., Krishnamurti, T., & Nakamura, K. (2000). The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. Journal of Applied Meteorology and Climatology, 39, 1965-1982. Recovered from https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809-817. Recovered from https://doi.org/10.1175/1520-426(1998)015<0809:TTRMMT>2.0.CO;2
Laurent, H., Jobard, I., & Toma, A. (1998). Validation of satellite and ground based estimates of precipitation over the Sahel. Atmospheric Research, 47-48, 651-670. Recovered from https://doi.org/10.1016/S0169-8095(98)00051-9
Lin, A., & Wang, X. L. (2011). An algorithm for blending multiple satellite precipitation estimates with in situ precipitation measurements in Canada. Journal of Geophysical Research: Atmospheres, 116(D21), 1-19. Recovered from https://doi.org/10.1029/2011JD016359
Massari, C., & Maggioni, V. (2020). Error and uncertainty characterization. In: Levizzani V., Kidd C., Kirschbaum D., Kummerow C., Nakamura K., & Turk F. (eds.). Satellite precipitation measurement. Advances in global change research. Vol. 69. Cham, Switzerland: Springer. Recovered from https://doi.org/10.1007/978-3-030-35798-6_4
Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246-1266.
Matheron, G. (1965). Les variables régionalisées et leur estimation. (Thèse). Paris, France: Masson.
Matheron, G. (1971). The theory of regionalized variables (English translation). Les Cahiers du Centre de Morphologie Mathématique, Fasc 5. Paris, France: Ecole Nationale Supérieure des Mines de Paris (NSMP).
Morin, E., Marra, F., & Armon, M. (2020). Dryland precipitation climatology from satellite observations. In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., & Turk, F. (eds.). Satellite precipitation measurement. Advances in global change research. Vol. 69 (pp. 843-860). Cham, Switzerland: Springer. Recovered from https://doi.org/10.1007/978-3-030-35798-6_19
Nerini, D., Zulkafli, Z., Wang, L. P., Onof, C., Buytaert, W., Lavadocasimiro, W., & Guyot, J. L. (2015). A comparative analysis of TRMM-rain gauge data merging techniques at the daily time scale for distributed rainfall-runoff modeling applications. Journal of Hydrometeorology, 16, 2153-2168. Recovered from https://doi.org/10.1175/JHM-D-14-0197.1
New, M., Todd, M., Hulme, M., & Jones, P. (2001). Precipitation measurements and trends in the twentieth century. International Journal of Climatology 21, 1899-1922. Recovered from https://doi.org/10.1002/joc.680
Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The variogram and kriging. Heidelberg, New York, Dordrecht, London: Springer Cham. Recovered from https://doi.org/10.1007/978-3-319-15865-5
Park, N. W., Kyriakidis, P. C., & Hong, S. (2017). Geostatistical integration of coarse resolution satellite precipitation products and rain gauge data to map precipitation at fine spatial resolutions. Remote Sensing, 9(3), 255, 1-19. Recovered from https://doi.org/10.3390/rs9030255
Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computer and Geosciences, 30, 683-691. Recovered from https://doi.org/10.1016/j.cageo.2004.03.012
Pielke, R. A., Stohlgren, T., Parton, W., Doesken, N., Money, J., & Schell, L. (2000). Spatial representativeness of temperature measurements from a single site. Bulletin of the American Meteorological Society, 81(4), 826-830. Recovered from https://www.jstor.org/stable/26215143
R Core Team. (n.d.). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Recovered from https://www.R-project.org
Rata, M., Douaoui, A., Larid, M., & Douaik, A. (2020). Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theoretical and Applied Climatology, 141, 1009-1024. Recovered from https://doi.org/10.1007/s00704-020-03218-z
Ruiz-Alvarez, O., Singh, V. P., Enciso-Medina, J., Ontiveros-Capurata, R. E., & Corrales-Suastegui, A. (2020). Spatio-temporal trends of monthly and annual precipitation in Aguascalientes, Mexico. Atmosphere, 11(5), 437. Recovered from https://doi.org/10.3390/atmos11050437
Sivasubramaniam, K., Sharma, A., & Alfredsen, K. (2019). Merging radar and gauge information within a dynamical model combination framework for P estimation in cold climates. Environmental Modelling & Software, 119, 99-110. Recovered from https://doi.org/10.1016/j.envsoft.2019.05.013
Skofronick-Jackson, G., Kirschbaum, D., Petersen, W., Huffman, G., Kidd, C., Stocker, E., & Kakar, R. (2018). The global p measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quarterly Journal of the Royal Meteorological Society, 144(Suppl. 1), 27-48. Recovered from https://doi.org/10.1002/qj.3313
Smalley, M., & L’Ecuyer, T. (2015). A Global assessment of the spatial distribution of precipitation occurrence. Journal of Applied Meteorology and Climatology, 54(11), 2179-2197. Recovered from https://doi.org/10.1175/JAMC-D-15-0019.1
Tapia-Silva, F. O., & Gómez-Reyes, E. (2020). Disponibilidad natural de agua en las subregiones de estudio. En: Aguilar-Benitez (ed.). La gestión de los usos del agua en tres subregiones hidrológicas: rÃo San Juan, Valle de México y Bajo Grijalva (pp. 55-80), Tijuana, México: El Colegio de la Frontera Norte.
Tapia-Silva, F. O., Silván-Cárdenas, J. L., & Rosales-Arriaga, E. (2013) Análisis espacial, hacia una utilización mejorada de la información medida en campo y por satélites, para apoyar la toma de decisiones en materia hídrica y Ambiental. Tecnología y ciencias del agua, 4(1), 149-166. Recovered from http://www.revistatyca.org.mx/index.php/tyca/article/view/343/304
Toté, C., Patricio, D., Boogaard, H., Van der Wijngaart, R., Tarnavsky, E., & Funk, C. (2015). Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, 7(2), 1758-1776. Recovered from https://doi.org/10.3390/rs70201758
Van der Meer, F. (2012). Remote-sensing image analysis and geostatistics. International Journal of Remote Sensing, 33(18), 5644-5676. Recovered from https://doi.org/10.1080/01431161.2012.666363
Verdin, A., Rajagopalan, B., Kleiber, W., & Funk, C. (2015). A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resources Research, 51(2), 908-921. Recovered from https://doi.org/10.1002/2014wr015963
Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (3rd ed.). Berlin, Heidelberg, Germany: Springer Science & Business Media.
Wang, X. L., & Lin, A. (2015). An algorithm for integrating satellite precipitation estimates with in situ precipitation data on a pentad time scale. Journal of Geophysical Research: Atmospheres, 120, 3728-3744. Recovered from https://doi.org/10.1002/2014JD022788.
WMO, World Meteorological Organization. (2008). Guide to meteorological instruments and methods of observation. WMO-No. 8 (7th ed.). Geneva, Switzerland: World Meteorological Organization. Recovered from https://www.weather.gov/media/epz/mesonet/CWOP-WMO8.pdf
Wu, Z., Zhang, Y., Sun, Z., Lin, Q., & He, H. (2018). Improvement of a combination of TMPA (or IMERG) and ground-based P and application to a typical region of the East China Plain. Science of the Total Environment, 640-641, 1165-1175. Recovered from https://doi.org/10.1016/j.scitotenv.2018.05.272
Yang, P., & Ng, T. L. (2019). Fast Bayesian regression kriging method for realâ€time merging of radar, rain gauge, and crowdsourced rainfall data. Water Resources Research, 55, 3194-3214. Recovered from https://doi.org/10.1029/2018WR023857
Zulkafli, Z., Buytaert, W., Onof, C., Manz, B., Tarnavsky, E., Lavado, W., & Guyot, J.-L. (2014). A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean-Amazon River Basins. Journal of Hydrometeorology, 15, 581-592. Recovered from https://doi.org/10.1175/JHM-D-13-094.1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






