Arsenic (III) removal from groundwater using orange residues: Efficiency and adsorption models under high-andean conditions

Authors

DOI:

https://doi.org/10.24850/j-tyca-2026-01-07

Keywords:

Adsorption, arsenic, orange residue, isotherms, groundwater, high-andean, Peru

Abstract

The present study evaluated the adsorption isotherms of arsenic (III) with the biomass from orange waste (seeds, pulp, and peel) under high-altitude conditions. It begins with the extraction of the biomass from the orange waste and the determination of the As concentration in a groundwater sample from the southern area of Juliaca city, Peru. For the adsorption tests, the jar test apparatus was used (200 rpm for 2 hours), with an experimental statistical design of 3A x 4B; factor A (orange waste: A1 = peel, A2 = seed, and A3 = pulp) and factor B (waste mass: B1 = 2 g, B2 = 3 g, B3 = 4 g, and B4 = 5 g), at a pH of 5 in 500 ml beakers. The As (III) concentration was determined using the silver diethyldithiocarbamate method. Additionally, the biomass characterization was performed by X-ray fluorescence spectroscopy for the chemical composition analysis. The characterization results of the bioadsorbents showed higher amounts of calcium and calcium oxide. The best adsorption biomasses were obtained with 5 g of biomass for the seed (98.10 %) and pulp (97.89 %), and peel, which showed the best result with 4 g (97.59 %). The obtained data were modeled according to the Langmuir, Freundlich, and Temkin isotherm equations. The experimental data showed the best fit with the Langmuir model for all three biomasses in the adsorption process of As(III).

References

Abad-Torres, L., Choquecota-Mena, R., Mamani-Coaquera, G., Ticona-Quispe, P., Sanga-Franco, M., & Gutierrez-Flores, I. (2020). Bioadsorción de arsénico del agua del río Locumba utilizando cáscara de naranja (Citrus sinensis), Tacna. Ciencia & Desarrollo, 19(26), 41-47. DOI: https://doi.org/10.33326/26176033.2020.26.931

Acuña-Piedra, A., Araya-Obando, A., & Romero-Esquivel, L. G. (2016). Selección teórica de adsorbentes potenciales naturales de bajo costo para la remoción de arsénico en el agua de consumo humano en Costa Rica. Revista Tecnología en Marcha, 29(4), 23-34. DOI: https://doi.org/10.18845/tm.v29i6.2899

Aguilar-Salas, M., & Flores-Rodriguez, C. (2018). Evaluación de la cáscara de naranja (Citrus sinensis) como material adsorbente natural de ion metálico Cu(II) (tesis de grado). Universidad Nacional de San Agustín, Perú.

Ahmad, T., Danish, M., Dadi, M., Siraj, K., Sundaram, T., Raj, D. S., Majeed, S., & Ramasamy, S. (2024). Potentials of orange wastes in wastewater treatment technology: A comprehensive review. Journal of Water Process Engineering, 67, 106113. DOI: https://doi.org/10.1016/j.jwpe.2024.106113

APHA, AWWA, & WEF, American Public Health Association), American Water Works Association, & World Economic Forum. (2012). Standard methods for examination of water and wastewater (22nd ed). Washington, DC, USA: American Public Health Association.

Balint, R., Celi, L., Barberis, E., Prati, M., & Martin, M. (2020). Organic phosphorus affects the retention of arsenite and arsenate by goethite. Journal of Environmental Quality, 49(6), 1655-1666. DOI: https://doi.org/10.1002/jeq2.20145

Beltrán-Suito, R. (2015). Aplicación de un diseño experimental factorial en el estudio de la adsorción de fenol y nitrofenoles con nanofibras de carbono (tesis de licenciatura). Pontificia Universidad Católica del Perú, Perú. Recuperado de https://tesis.pucp.edu.pe/items/84b92256-7e0b-4b86-98ef-31a4ecd27d40

Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-East Asia. Environment International, 35(3), 647-654. DOI: https://doi.org/10.1016/j.envint.2008.10.004

Castro, D. A., Pereira, D. H., & Leal, P. V. B. (2019). Langmuir isotherm: Kinetic and equilibrium considerations. Periodico Tche Quimica, 16(31), 324-334. DOI: https://doi.org/10.52571/PTQ.v16.n31.2019.330_Periodico31_pgs_324_334.pdf

Deng, Y., Li, Y., Li, X., Sun, Y., Ma, J., Lei, M., & Weng, L. (2018). Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite. Chemosphere, 199, 617-624. DOI: https://doi.org/10.1016/j.chemosphere.2018.02.018

Díaz-Llontop, D., & Palacios-Beltran, K. J. (2023). Evaluación de las características de exposición al arsénico en el agua que consumen 4 centros poblados del distrito de Candarave-Tacna, Perú (tesis título profesional de toxicóloga). Universidad Nacional Mayor de San Marcos, Perú. Recuperado de https://cybertesis.unmsm.edu.pe/backend/api/core/bitstreams/c18ecbd1-4eb7-4a0f-bc1b-57f6371217f1/content

Diez-Pérez-Núñez, D., Colmán, D., García, L., Nakagoe, S., Ramírez, K., Torres, O., Chamorro-Olivares, J., & Mereles, L. (2021). Optimización del método de digestión por microondas y espectrofotometría de absorción atómica con generador de hidruro para la cuantificación de arsénico en diferentes matrices. South Florida Journal of Development, 2(5), 7102-7110. DOI: https://doi.org/10.46932/sfjdv2n5-057

DIGESA, Dirección General de Salud Ambiental. (2015). RD N.° 160-2015/DIGESA/SA, Protocolo de procedimientos para la toma de muestras, preservación, conservación, transporte, almacenamiento y recepción de agua para consumo humano. Lima, Perú: Dirección General de Salud Ambiental e Inocuidad Alimentaria, Ministerio de Salud del Perú. Recuperado de http://www.digesa.minsa.gob.pe/normaslegales/normas/rd_160_2015_digesa.pdf#:~:text=Que%2C en efecto%2C con la aprobación del documento,Humano%2C aprobado por Decreto Supremo n. 0 031-2010-SA

Dobrosz-Gómez, I., Gómez, M. Á., & Santa, C. (2018). Optimization of the Cr(VI) adsorption process on bituminous activated carbon. Información Tecnológica, 29(6), 43-56. DOI: https://doi.org/10.4067/S0718-07642018000600043

El-Moselhy, M. M., Ates, A., & Çelebi, A. (2017). Synthesis and characterization of hybrid iron oxide silicates for selective removal of arsenic oxyanions from contaminated water. Journal of Colloid and Interface Science, 488, 335-347. DOI: https://doi.org/10.1016/j.jcis.2016.11.003

Espinoza-Lazaro, S. C., & Vasquez-Santisteban, V. H. (2022). Remoción de plomo mediante un biofiltro, empleando cáscara de limón en aguas del río Santa, sector Chuquicara, Ancash, 2022 (tesis para título profesional en ingeniero civil). Universidad César Vallejo, Perú. Recuperado de https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/99428/Espinoza_LSC-Vasquez_SVH-SD.pdf?sequence=4

Feng, N.-C., Guo, X.-Y., & Liang, S. (2010). Enhanced Cu(II) adsorption by orange peel modified with sodium hydroxide. Transactions of Nonferrous Metals Society of China (English Edition), 20(Suppl. 1), s146-s152. DOI: https://doi.org/10.1016/S1003-6326(10)60030-1

Feng, N., Guo, X., Liang, S., Zhu, Y., & Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, 185(1), 49-54. DOI: https://doi.org/10.1016/j.jhazmat.2010.08.114

González-Chávez, J. L., Chiken-Soriano, A., Martín-Romero, F., & Ceniceros-Gómez, A. E. (2023). Elucidation of the arsenic removal mechanism in aqueous solution with metallurgical waste. Revista Internacional de Contaminación Ambiental, 39, 25-42. DOI: https://doi.org/10.20937/RICA.54399

Gupta, A. D., Rene, E. R., Giri, B. S., Pandey, A., & Singh, H. (2021). Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review. Journal of Environmental Chemical Engineering, 9(6). DOI: https://doi.org/10.1016/j.jece.2021.106376

Gutiérrez-de-la-Cruz, A., Ibañez-Arteaga, Y., Alva-Diaz, L., & Effio-Quezada, W. (2022). Efficiency of Phaseolus vulgaris pod and Citrus sinensis peel in arsenic biosorption from Moche River water. In: Education, research and leadership in post-pandemic engineering: resilient, inclusive and sustainable actions. Florida, USA: Latin American and Caribbean Consortium of Engineering Institutions. DOI: https://doi.org/10.18687/LACCEI2022.1.1.633

Hadjiivanov, K., Ivanova, E., Mihaylov, M., & Chakarova, K. (2015). Adsorption of two or more molecules on one cationic center in porous materials. In: Comprehensive guide for mesoporous materials. Vol. 2 (pp. 269-287). Recuperado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080529008&partnerID=40&md5=cb3ac5368f8ec1ccbd1750ea5e072c7f

Haque, M. N., Morrison, G. M., Perrusquía, G., Gutierréz, M., Aguilera, A. F., Cano-Aguilera, I., & Gardea-Torresdey, J. L. (2007). Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 145(1-2), 30-35. DOI: https://doi.org/10.1016/j.jhazmat.2006.10.080

Hincapié-Mejía, G., Cardona-Cuervo, S., & Ríos, L. A. (2018). Estudio termodinámico de la adsorción de un colorante azóico por medio de un residuo lignocelulósico en medio acuoso. Ingeniería y Desarrollo, 36(1), 97-118. DOI: https://doi.org/10.14482/inde.36.1.10941

Hu, S., Fu, J., & Zhou, S. (2024). Exploring the interference mechanisms of surface and aqueous complexes with groundwater arsenate and arsenite adsorption. Environmental Science and Pollution Research, 31(6), 8499-8509. DOI: https://doi.org/10.1007/s11356-023-31676-1

Huillca-Lima, M., & Apaza-Mamani, L. (2019). Evaluación de la concentración de arsénico en aguas subterráneas para consumo humano en la Asociación Nueva Jerusalén, Juliaca-Puno (tesis de bachiller en ingeniería ambiental). Universidad Peruana Unión, Perú. Recuperado de https://repositorio.upeu.edu.pe/bitstream/handle/20.500.12840/2611/Martha_Trabajo_Bachiller_2019.pdf?sequence=1&isAllowed=y

Khaskheli, M. I., Memon, S. Q., Siyal, A. N., & Khuhawar, M. Y. (2011). Use of orange peel waste for arsenic remediation of drinking water. Waste and Biomass Valorization, 2(4), 423-433. DOI: https://doi.org/10.1007/s12649-011-9081-7

Liu, L., Rao, Y., Tian, C., Huang, T., Lu, J., Zhang, M., & Han, M. (2021). Adsorption performance of La(III) and Y(III) on orange peel: Impact of experimental variables, isotherms, and kinetics. Adsorption Science and Technology, 2021. DOI: https://doi.org/10.1155/2021/7189639

Liu, N., Gao, R., Guo, J., Fu, L., Xue, B., Ma, K., & Lin, C. (2024). Mechanisms of calcium-mediated As(V) immobilization by undissolved and dissolved biochar in saline-alkali environments. Journal of Environmental Management, 370. DOI: https://doi.org/10.1016/j.jenvman.2024.122775

Lu, L., & Na, C. (2022). Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution. Philosophical Magazine Letters, 102(7), 239-253. DOI: https://doi.org/10.1080/09500839.2022.2084571

Maldonado, J. A. H., Aguilera, C. E. C., Hernández, M. M. S., Arias, A. N. A., & Soto, R. H. (2021). Evaluation of orange peel (Citrus sinensis) as a source of bioactive components and its use as a bioadsorbent. Desalination and Water Treatment, 231, 348-358. DOI: https://doi.org/10.5004/dwt.2021.27499

Mamani-Navarro, W. (2019). Contaminación de las aguas subterráneas por arsénico (As) el caso del distrito de Juliaca-Perú. Ñawparisun – Revista de Investigación Científica, 1(4), 31-36. Recuperado de https://unaj.edu.pe/revista/index.php/vpin/issue/view/4/3

Mehanathan, S., Jaafar, J., Nasir, A. M., Ismail, A. F., Matsuura, T., Othman, M. H. D., Rahman, M . A., & Yusof, N. (2023). Magnesium oxide nanoparticles for the adsorption of pentavalent arsenic from water: Effects of calcination. Membranes, 13(5). DOI: https://doi.org/10.3390/membranes13050475

Munio, A. A. Z., Domato, D. C., Pido, A. A. G., Lagud, Y. J., & Ambolode, L. C. C. (2023). A First-principles study on the chemisorption of arsenic on the cellulose biopolymer. Biointerface Research in Applied Chemistry, 13(6). DOI: https://doi.org/10.33263/BRIAC136.571

OMS, Organización Mundial de la Salud. (2011). Guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera adenda. Recuperado de https://bityl.co/7FYT

OMS, Organización Mundial de la Salud. (2022). Arsénico. Recuperado de https://www.who.int/es/news-room/fact-sheets/detail/arsenic

OMS, Organización Mundial de la Salud. (2023). Agua para consumo humano. Recuperado de https://www.who.int/es/news-room/fact-sheets/detail/drinking-water

Pellegrini, J., & De-Celis, J. (2023). Optimización de isotermas de adopción mediante Simulated Annealing. Revista Politécnica, 19(38), 30-37. DOI: https://doi.org/10.33571/rpolitec.v19n38a2

Peng, Y., Xiao, H. Y., Cheng, X. Z., & Chen, H. M. (2013). Removal of arsenic from wastewater by using pretreating orange peel. Advanced Materials Research, 773, 889-892. DOI: https://doi.org/10.4028/www.scientific.net/AMR.773.889

Pokhrel, D., & Viraraghavan, T. (2008). Arsenic removal from aqueous solution by iron oxide-coated biomass: Common ion effects and thermodynamic analysis. Separation Science and Technology, 43(13), 3545-3562. DOI: https://doi.org/10.1080/01496390802212609

Rahdar, S., Taghavi, M., Khaksefidi, R., & Ahmadi, S. (2019). Adsorption of arsenic (V) from aqueous solution using modified saxaul ash: Isotherm and thermodynamic study. Applied Water Science, 9(4), 1-9. DOI: https://doi.org/10.1007/s13201-019-0974-0

Rivas, C. F., Nuñez, O., Longoria, F., & Gonzalez, L. (2014). Isoterma de Langmuir y Freundlich como modelos para la adsorción de componentes de ácido nucleico sobre WO₃. Saber, Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente, 26(1), 43-49.

Sandoval-Ibarra, F. D., López-Cervantes, J. L., & Gracia-Fadrique, J. (2015). Langmuir’s Equation for simple liquids and surfactants. Educación Química, 26(4), 307-313. DOI: https://doi.org/10.1016/j.eq.2015.03.002

Satish, N., Jagadeesh, A., Varma, M. R. R., & Rajitha, K. (2025). A closed-form expression of electrical conductivity from climate and land use parameters for Krishna River Basin, India. Lecture Notes in Civil Engineering, 397 LNCE, 173-184. DOI: https://doi.org/10.1007/978-981-97-7467-8_11

SENAMHI-Perú, Servicio Nacional de Meteorología e Hidrología del Perú. (2023). Pronóstico del tiempo para Juliaca (Puno). Lima, Perú: Servicio Nacional de Meteorología e Hidrología del Perú.

Shahmohammadi, S., Shahmoradi, B., Maleki, A., Yang, J.-K., & Lee, S.-M. (2019). Efficiency of an iron matrix-based filter in adsorption of arsenic from water. Desalination and Water Treatment, 163, 198-205. DOI: https://doi.org/10.5004/dwt.2019.24480

Shehzad, K., Xie, C., He, J., Cai, X., Xu, W., & Liu, J. (2018). Facile synthesis of novel calcined magnetic orange peel composites for efficient removal of arsenite through simultaneous oxidation and adsorption. Journal of Colloid and Interface Science, 511, 155-164. DOI: https://doi.org/10.1016/j.jcis.2017.09.110

Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. DOI: https://doi.org/10.1016/S0883-2927(02)00018-5

Suteu, D., Badeanu, M., Malutan, T., & Chirculescu, A.-I. (2016). Valorization of food wastes (orange seeds) as adsorbent for dye retention from aqueous medium. Desalination and Water Treatment, 57(60), 29070-29081. DOI: https://doi.org/10.1080/19443994.2016.1196392

Tadepalli, S., Murthy, K. S. R., & Rakesh, N. N. (2016). Isothermal and linear regression modelling of Cu (II) and Fe (II) using orange peel as an adsorbent in batch studies. International Journal of PharmTech Research, 9(5), 197-210. Recuperado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973647662&partnerID=40&md5=ae57d1413b7eaa67e27c384368a2811f

Tapia, N., Muñoz, J., Torres, F., & Yarango, A. (2003). Biosorción de Pb(II) por cáscara de naranja, citrus cinesis, modificada. Revista Peruana de Química e Ingeniería Química, 5(2), 48-53.

Vitela-Rodriguez, A. V., & Rangel-Mendez, J. R. (2013). Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles. Journal of Environmental Management, 114, 225-231. DOI: https://doi.org/10.1016/j.jenvman.2012.10.004

Vizcaíno-Mendoza, L., & Fuentes-Molina, N. (2015). Biosorción de Cd, Pb y Zn por biomasa pretratada de algas rojas, cáscara de naranja y tuna. Ciencia e Ingeniería Neogranadina, 25(1), 43-60. DOI: https://doi.org/10.18359/rcin.432

Wang, N., Cui, Y., Zeng, L., & Zhu, L. (2023). One step treatment of arsenic calcium residues by combining H2O2 oxidation and CaO chemical stabilization. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 51(10), 70-76. DOI: https://doi.org/10.13245/j.hust.230420

Wang, Y. (2023). Removal of arsenic and metal ions from acidic effluents via the Fenton reaction method. Journal of the Southern African Institute of Mining and Metallurgy, 123(8), 415-422. DOI: https://doi.org/10.17159/2411-9717/1863/2023

WHO, World Health Organization. (2011). Report on the burden of endemic health care-associated infection worldwide: Clean care is safer care. Geneva, Switzerland: World Health Organization.

Wu, P.-Y., Jiang, Y.-P., Zhang, Q.-Y., Jia, Y., Peng, D.-Y., & Xu, W. (2016). Comparative study on arsenate removal mechanism of MgO and MgO/TiO2 composites: FTIR and XPS analysis. New Journal of Chemistry, 40(3), 2878-2885. DOI: https://doi.org/10.1039/c5nj02358k

Xanthopoulou, M., Gkiliopoulos, D., Triantafyllidis, K. S., Kostoglou, M., & Katsoyiannis, I. A. (2025). Removal of hexavalent chromium and pentavalent arsenic from aqueous solutions by adsorption on polyethylenimine-modified silica nanoparticles. Environmental Science and Pollution Research, 32(15), 9443-9461. DOI: https://doi.org/10.1007/s11356-024-35473-2

Yoo-iam, M., Kambhu, A., & Satapanajaru, T. (2023). Adsorption of phenol and zinc as dual contaminants in groundwater on flood plain deposit aquifer: Kinetic, thermodynamic, and column operation studies. Water, Air, and Soil Pollution, 234(4). DOI: https://doi.org/10.1007/s11270-023-06280-1

Downloads

Published

2026-01-01

How to Cite

Pariguana-Castillo, Y. Y., Quispe-Ccallo, N. G., & Vigo-Rivera, J. E. (2026). Arsenic (III) removal from groundwater using orange residues: Efficiency and adsorption models under high-andean conditions. Tecnología Y Ciencias Del Agua, 17(1), 265-313. https://doi.org/10.24850/j-tyca-2026-01-07

Similar Articles

1-10 of 75

You may also start an advanced similarity search for this article.