Water balance in coffee-growing regions through evaporation deficit
DOI:
https://doi.org/10.24850/j-tyca-2026-01-05Keywords:
Rainfall, evaporation, climatic zones, evapotranspiration, coffee growing, MexicoAbstract
Mexican coffee-growing area is zoned geographically, but given its climatic diversity, this classification hardly captures environmental homogeneity and does not represent the adaptive conditions of the crop. Evapotranspiration is intended to identify the regional moisture output and, although it is accepted by academia, it is estimated, and the quality of the information generated depends on the predictive capacity of the algorithm or the efficiency of the model used. Therefore, an evaluative indicator of the water balance (BH) of the coffee-growing area of Oaxaca, Puebla and Veracruz was proposed with the wet and dry periods defined by their rainfall. Monthly precipitation and evaporation data were collected from the area studied, whose quotient was called “evaporation deficit (DE)” (DE > 1.0: excess, DE < 1.0: deficit). The wet season (PH = June-September) and dry season (PS = November-April) were delimited, with PH; and the rainiest month of the year, areas with homogeneous rainfall were delimited (PP6 = June, PP7 = July, PP8 = August, PP9 = September); with the calculation of the DE and its modification, the DEP1 (quotient of the DE in PS vs. annual DE and its relation to the DE in January) areas with homogeneous humidity were delimited and DEPH was validated with the trend in PS, and the calculation of the DE by month and specific site. DEP1 is a climatic index that detects temporal and spatial variations in the BH of coffee-growing areas (R2 = 0.92) and will contribute to managing water resources and evaluating the environmental adaptation of the crop.
References
Aceves-Navarro, L. A., Rivera-Hernández, B., López-Castañeda, A., Palma-López, D. J., González-Mancillas, R., & Juárez-López, J. F. (2018). Áreas potenciales y vulnerabilidad del cultivo de café tipo robusta (Coffea canephora P.) al cambio climático en el estado de Tabasco, México. Nova Scientia, 10(20), 369-396. DOI: https://doi.org/10.21640/ns.v10i20.1379
Alvarez-Olguin, G., & Escalante‐Sandoval, C. (2017). Modes of variability of annual and seasonal rainfall in Mexico. Journal of the American Water Resources Association, 53(1), 144-157. DOI: https://doi.org/10.1111/1752-1688.12488
Arellano-Monterrosas, J. L., & Ruiz-Meza, L. E. (2019). Variabilidad climática y eventos extremos en la cuenca del río Zanatenco, Chiapas. Tecnología y ciencias del agua, 10(3), 249-274. DOI: https://doi.org/10.24850/j-tyca-2019-03-10
Baiamonte, G. (2021). Simplified interception/evaporation model. Hydrology, 8(3), 99. DOI: https://doi.org/10.3390/hydrology8030099
Baltazar-Silva, D. F., Morejón-García, M., Díaz-Pita, A., De Almeida, F. M., Da Costa-Neta, J. F., & Gonçalves, V. (2020). Caracterización agroclimática de la provincia Uigé, Angola en función del desarrollo del Café Robusta. Cultivos Tropicales, 41(1), e01. Recuperado de https://www.redalyc.org/journal/1932/193263199001/html/
Bautista-Calderon, E. A., Gutiérrez-Castorena, E. V., Ordaz-Chaparro, V. M., Gutiérrez-Castorena, M., & Cajuste-Bontemps, L. (2018). Sistemas agroforestales de café en Veracruz, México: identificación y cuantificación espacial usando SIG, percepción remota y conocimiento local. Terra Latinoamericana, 36(3), 261-273. DOI: https://doi.org/10.28940/terra.v36i3.350
Brigido, J. G., Nikolskii, I., Terrazas, L., & Herrera, S. S. (2015). Estimación del impacto del cambio climático sobre fertilidad del suelo y productividad de café en Veracruz, México. Tecnología y ciencias del agua, 6(4), 101-116. Recuperado de https://www.revistatyca.org.mx/index.php/tyca/article/view/1182
Bunn, C., Läderach, P., Pérez-Jimenez, J. G., Montagnon, C., & Schilling, T. (2015). Multiclass classification of agro-ecological zones for Arabica coffee: an improved understanding of the impacts of climate change. PLoS One, 10(10), e0140490. DOI: https://doi.org/10.1371/journal.pone.0140490
Cassamo, C. T., Draper, D., Romeiras, M. M., Marques, I., Chiulele, R., Rodrigues, M., Stalmans, M., Partelli, F. L., Ribeiro-Barros, A., & Ramalho, J. C. (2023). Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique: Agroforestry as an alternative management system to strengthen crop sustainability. Agriculture, Ecosystems & Environment, 346, 108341. DOI: https://doi.org/10.1016/j.agee.2022.108341
Castelán-Vega, R., Tamariz-Flores, V., Linares-Fleites, G., & Cruz-Montalvo, A. (2014). Agresividad de las precipitaciones en la subcuenca del río San Marcos, Puebla, México. Investigaciones Geográficas, Boletín del Instituto de Geografía, (83), 28-40. DOI: https://doi.org/10.14350/rig.33480
Chalchissa, F. B., Diga, G. M., & Tolossa, A. R. (2022). Modeling the responses of coffee (Coffea arabica L.) distribution to current and future climate change in Jimma Zone, Ethiopia. SAINS TANAH-Journal of Soil Science and Agroclimatology, 19(1), 19-32. DOI: https://doi.org/10.20961/stjssa.v19i1.54885
Chemura, A., Kutywayo, D., Chidoko, P., & Mahoya, C. (2016). Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe. Regional Environmental Change, 16(2), 473-485. DOI: https://doi.org/10.1007/s10113-015-0762-9
Claude, J. P. (2016). Environments suitable for the species of the coffe a genus in Martinique (the case of Coffea arabica typica variety). International Journal of Recent Research and Review, 9(2), 21-33. DOI: https://doi.org/10.18483/ijSci.2235
Conagua & SMN, Comisión Nacional del Agua, Servicio Meteorológico Nacional. (2024). Normales climatológica por estado. Recuperado de https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/normales-climatologicas-por-estado
David, J. S., Valente, F., & Gash, J. H. (2006). Evaporation of intercepted rainfall. In: Anderson, M. G. (ed.). Encyclopedia of Hydrological Sciences (pp. 627-634). Hoboken, USA: John Wiley. DOI: https://doi.org/10.1002/0470848944.hsa046
De Jesús, A., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Alcocer-Yamanaka, V. H. (2016). The use of TRMM 3B42 product for drought monitoring in Mexico. Water, 8(8), 325. DOI: https://doi.org/10.3390/w8080325
Esperón-Rodríguez, M., Bonifacio-Bautista, M., & Barradas, V. L. (2016). Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico. Ambio, 45(2), 146-160. DOI: https://doi.org/10.1007/s13280-015-0690-4
Fernández, T., & Trejo, I. (2020). Rainfall interception based on indirect methods: A case study in temperate forests in Oaxaca, Mexico. Journal of the American Water Resources Association, 56(4), 712-723. DOI: https://doi.org/10.1111/1752-1688.12844
González, G. H. A., & Hernández, S. J. R. (2016). Zonificación agroecológica del Coffea arabica en el municipio Atoyac de Álvarez, Guerrero, México. Investigaciones Geográficas, (90), 105-118. DOI: https://doi.org/10.14350/rig.49329
Granados-Ramírez, R., Barrios, M., De-la-Paz, M., & Peña-Manjarrez, V. (2014). Change and climate change in the slope of the Gulf of Mexico: Impacts on coffee production. Revista Mexicana de Ciencias Agrícolas, 5(3), 473-485. DOI: https://doi.org/10.29312/remexca.v5i3.951
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., & Seneviratne, S. I. (2014). Global assessment of trends in wetting and drying over land. Nature Geoscience, 7(10), 716-721. DOI: https://doi.org/10.1038/ngeo2247
Guajardo-Panes, R. A., Díaz-Padilla, G., López-Morgado, R., Hunter, M. R., & Hernández-Martínez, G. (2020). II. Ordenamiento e implementación de un Observatorio cafetalero en la zona centro del estado de Veracruz (OC-ZCEV). En: Esqueda-Esquivel et al. (eds.). Diagnóstico, productividad y ambiente en cafetales: estudios regionales y de caso (pp. 22-46). México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, y Centro de Investigación Regional Golfo Centro. Recuperado de https://red-sam.org/wp-content/uploads/Libro%20tecnico%2039%20-%20Diagnosito,%20productividad%20y%20ambiente%20en%20cafetales.pdf
ICO, International Coffee Organization. (2024). Daily coffee prices. Recuperado de https://ico.org/resources/public-market-information/
INEGI, Instituto Nacional de Estadística, Geografía e Informática. (2001). Conjunto de datos vect+oriales fisiográficos. Continuo Nacional serie I. Subprovincias fisiográficas. Recuperado de https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267599
Lara-Estrada, L., Rasche, L., & Schneider, U. A. (2017). Modeling land suitability for Coffea arabica L. in Central America. Environmental Modelling & Software, 95, 196-209. DOI: https://doi.org/10.1016/j.envsoft.2017.06.028
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology (pp. 179-184). Recuperado de https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf
Muñoz-Villers, L. E., Geris, J., Alvarado-Barrientos, M. S., Holwerda, F., & Dawson, T. (2020). Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrology Earth System Sciences, 24(4), 1649-1668. DOI: https://doi.org/10.5194/hess-24-1649-2020
Murray-Tortarolo, G. N. (2021). Seven decades of climate change across Mexico. Atmósfera, 34(2), 217-226. DOI: https://doi.org/10.20937/ATM.52803
Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M., & Schroth, G. (2015). Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS One, 10(4), e0124155. DOI: https://doi.org/10.1371/journal.pone.0124155
Park, J., Byrne, R., & Böhnel, H. (2017). The combined influence of Pacific decadal oscillation and Atlantic multidecadal oscillation on central Mexico since the early 1600s. Earth and Planetary Science Letters, 464, 1-9. DOI: https://doi.org/10.1016/j.epsl.2017.02.013
Pineda, S. L. D., & Suárez, H. J. E. (2014). Elaboración de un SIG orientado a la zonificación agroecológica de los cultivos. Ingeniería Agrícola, 4(3), 28-32. Recuperado de https://www.redalyc.org/pdf/5862/586262041005.pdf
QGIS Development Team. (2024). QGIS Geographic Information System. Recuperado de https://qgis.org/es/site/
Quiroz-Antunez, U. G., Monterroso-Rivas, A. I., Calderón-Vega, M. F., & Ramírez-García, A. G. (2022). Aptitud de los cultivos de café (Coffea arabica L.) y cacao (Theobroma cacao L.) considerando escenarios de cambio climático. La Granja. Revista de Ciencias de la Vida, 36(2), 60-74. DOI: https://doi.org/10.17163/lgr.n36.2022.05
R Core Team. (2024). R: A language and environment for statistical computing. Recuperado de https://www.R-project.org/
Ruelas-Monjardín, L. C., Nava-Tablada, M. E., Cervantes, J., & Barradas, V. L. (2014). Importancia ambiental de los agroecosistemas cafetaleros bajo sombra en la zona central montañosa del estado de Veracruz, México. Madera y Bosques, 20(3), 27-40. DOI: https://doi.org/10.21829/myb.2014.203149
Salas-López, R., Gómez-Fernández, D., Silva-López, J. O., Rojas-Briceño, N. B., Oliva, M., Terrones-Murga, R. E., Iliquin-Trigoso, D., Barboza-Castillo, E., & Barrena-Gurbillón, M. Á. (2020). Land suitability for coffee (Coffea arabica) growing in Amazonas, Peru: Integrated use of AHP, GIS and RS. ISPRS International Journal of Geo-Information, 9(11), 673. DOI: https://doi.org/10.3390/ijgi9110673
Sharmila, S., & Hendon, H. H. (2020). Mechanisms of multiyear variations of Northern Australia wet-season rainfall. Scientific Reports, 10, 5086. DOI: https://doi.org/10.1038/s41598-020-61482-5
SIAP, Servicio de Información Agroalimentaria y Pesquera. (2024). Anuario estadístico de la producción agrícola. Recuperado de https://nube.siap.gob.mx/cierreagricola/
Wagner, S., Jassogne, L., Price, E., Jones, M., & Preziosi, R. (2021). Impact of climate change on the production of Coffea arabica at Mt. Kilimanjaro, Tanzania. Agriculture, 11(1), 53. DOI: https://doi.org/10.3390/agriculture11010053
Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J., & Savenije, H. H. G. (2014). Contrasting roles of interception and transpiration in the hydrological cycle-Part 1: Simple terrestrial evaporation to atmosphere model. Earth System Dynamics, 5(2), 441-469. DOI: https://doi.org/10.5194/esdd-5-203-2014
Weldemichael, G., & Teferi, D. (2019). The impact of climate change on coffee (Coffea arabica L.) production and genetic resources. International Journal of Research, 5(11), 26-34. DOI: https://doi.org/10.20431/2454-6224.0511004
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






