Optimización del comportamiento hidráulico de vertederos laberínticos asimétricos con arcos triangulares: análisis experimental de la eficiencia de descarga y variaciones geométricas
DOI:
https://doi.org/10.24850/j-tyca-2026-01-08Keywords:
vertedero laberíntico, vertedero de plano triangular, PKW, coeficiente de descargaAbstract
Este estudio examina el rendimiento hidráulico de vertederos laberínticos asimétricos con arcos triangulares y ciclos intermedios variables, centrándose en la optimización del coeficiente de descarga (Cd) bajo diferentes condiciones geométricas e hidráulicas. Se llevaron a cabo investigaciones experimentales en un canal con vertederos de arcos triangulares que presentaban ángulos de arco de 45°, 90° y 135°. Los resultados indican que el Cd más alto, de 0.949, se logró a un número de Froude (Fr) de 1.64 y un ángulo de arco de 90°, lo que demostró un rendimiento hidráulico óptimo. Los ciclos intermedios más anchos (R/W1 = 3.2) mejoraron el Cd a 0.949, mientras que los ciclos más estrechos (R/W1 = 2.5) produjeron un Cd más bajo de 0.633 debido al aumento de la turbulencia y la interferencia del flujo. Las curvas Q-Ht revelaron que la reducción del ancho del morro (W1) incrementó los niveles de agua aguas arriba y mejoró la descarga a bajos caudales, pero redujo la eficiencia a descargas más altas debido a la turbulencia. Estos hallazgos confirman que la modificación de los ciclos intermedios y la optimización de los ángulos de arco pueden mejorar significativamente la eficiencia hidráulica.
References
Anderson, R. M., & Tullis, B. P. (2011). Comparison of piano key and rectangular labyrinth weir hydraulics. Journal of Hydraulic Engineering, 138(4), 358-361. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000509
Aydin, M. C., Ulu, A. E., & Işık, E. (2024). Determination of effective flow behaviors on discharge performance of trapezoidal labyrinth weirs using numerical and physical models. Modeling Earth Systems and Environment, 10, 3763-3776. DOI: https://doi.org/10.1007/s40808-024-01996-3
Azimi, A. H., & Hakim, S. S. (2019). Hydraulics of flow over rectangular labyrinth weirs. Irrigation Science, 37(2), 183-193. DOI: https://doi.org/10.1007/s00271-018-0616-6
Ben-Said, M., Hafnaoui, M. A., & Madi, M. (2023). Numerical analysis of the influence of approach flow conditions on the efficiency of labyrinth weir. Modeling Earth Systems and Environment, 9(1), 41-51. DOI: https://doi.org/10.1007/s40808-022-01443-1
Cassidy, J. J., Gardner, C. A., & Peacock, R. T. (1985). Boardman labyrinth crest spillway. Journal of Hydraulic Engineering, 111(3), 398-416. DOI: https://doi.org/10.1061/(asce)0733-9429(1985)111:3(398)
Darvas, L. (1971). Discussion of performance and design of labyrinth weirs. Journal of Hydraulic Engineering (ASCE), 97, 1246-1251. DOI: https://doi.org/10.1061/JYCEAJ.0003056
Dehghani, H. S., & Varaki, M. E. (2021). Experimental investigation of upstream sedimentation and downstream bed levels’ effects on discharge coefficients of trapezoidal labyrinth weirs. Arabian Journal of Geosciences, 14, 1-16. DOI: https://doi.org/10.1007/s12517-021-08339-x
Dizabadi, S., Hakim, S. S., & Azimi, A. H. (2020). Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Measurement and Instrumentation, 71, 101683. DOI: https://doi.org/10.1016/j.flowmeasinst.2019.101683
Falvey, H. T. (2003). Hydraulic design of labyrinth weirs. Reston, USA: ASCE Press (American Society of Civil Engineers). DOI: https://doi.org/10.1061/9780784406311
Ghare, A. D., Mhaisalkar, V. A., & Porey, P. D. (2008). An approach to optimal design of trapezoidal labyrinth weirs. World Applied Sciences Journal, 3(6), 934-938.
Gupta, K. K., Kumar, S., & Ahmad, Z. (2015). Effect of weir height on flow performance of sharp crested rectangular–planform weir. World Applied Sciences Journal, 33(1), 168-175.
Hashem, T., Mohammed, A. Y., & Alfatlawi, T. J. (2024). Hydraulic characteristics of labyrinth sluice gate. Flow Measurement and Instrumentation, 96, 102556. DOI: https://doi.org/10.1016/j.flowmeasinst.2024.102556
Hay, N., & Taylor, G. (1970). Performance and design of labyrinth weirs. Journal of Hydraulic Engineering, 96(11), 2337-2357. DOI: https://doi.org/10.1061/JYCEAJ.0002766
Khode, B. V., Tembhurkar, A. R., Porey, P. D., & Ingle, R. N. (2011). Determination of crest coefficient for flow over trapezoidal labyrinth weir. World Applied Sciences Journal, 12(3), 324-329.
Kumar, S., Ahmad, Z., Mansoor, T., & Himanshu, S. K. (2012). Discharge characteristics of sharp crested weir of curved plan-form. Research Journal of Engineering Sciences, 1(4), 16-20.
Le, A. T., Hiramatsu, K., & Nishiyama, T. (2021). Hydraulic comparison between piano key weir and rectangular labyrinth weir. Geomate Journal, 20(82), 153-160. DOI: https://doi.org/10.21660/2021.82.j2106
Majedi-Asl, M., Fuladipanah, M., Arun, V., & Tripathi, R. P. (2022). Using data mining methods to improve discharge coefficient prediction in Piano Key and Labyrinth weirs. Water Supply, 22(2), 1964-1982. DOI: https://doi.org/10.2166/ws.2021.304
Masoudi, M. H., Yari, A., Sadeghian, J., & Norouzi, H. (2024). Experimental investigation of the discharge coefficient of the rectangular and trapezoidal labyrinth weirs considering variable congress lengths. Modeling Earth Systems and Environment, 10, 2819-2832. DOI: https://doi.org/10.1007/s40808-023-01925-w
Mattos-Villarroel, E. D., Ojeda-Bustamante, W., Díaz-Delgado, C., Salinas-Tapia, H., Flores-Velázquez, J., & Bautista-Capetillo, C. (2023). Methodological proposal for the hydraulic design of Labyrinth Weirs. Water, 15(4), 722. DOI: https://doi.org/10.3390/w15040722
Mirnaseri, M., & Emadi, A. (2014). Hydraulic performance of combined flow labyrinth weir-gate. Advance in Agriculture and Biology, 2, 54-60. DOI: https://doi.org/10.15192/pscp.aab.2014.1.1.article1
Monjezi, R., Heidarnejad, M., Masjedi, A., Purmohammadi, M. H., & Kamanbedast, A. (2018). Laboratory investigation of the Discharge Coefficient of flow in arced labyrinth weirs with triangular plans. Flow Measurement and Instrumentation, 64, 64-70. DOI: https://doi.org/10.1016/j.flowmeasinst.2018.10.011
Namazi, F. S. A., & Mozaffari, J. (2023). Investigation of labyrinth weirs discharge coefficient with the same length. Flow Measurement and Instrumentation, 94, 102468. DOI: https://doi.org/10.1016/j.flowmeasinst.2023.102468
Said, M. B., & Ouamane, A. (2024). Discharge capacity of an improved form of labyrinth weir. In: Kalinowska, M. B., Mrokowska, M. M., & Rowiński, P.M. (eds.). Advances in hydraulic research. ISH 2023. GeoPlanet: Earth and planetary sciences. Cham, Switzerland: Springer. DOI: https://doi.org/10.1007/978-3-031-56093-4_2
Seyedian, S. M., Haghiabi, A., & Parsaie, A. (2023). Reliable prediction of the discharge coefficient of triangular labyrinth weir based on soft computing techniques. Flow Measurement and Instrumentation, 92, 102403. DOI: https://doi.org/10.1016/j.flowmeasinst.2023.102403
Taylor, G. (1968). The performance of labyrinth weirs (Doctoral Thesis). University of Nottingham, UK.
Wang, F., Zheng, S., Ren, Y., Liu, W., & Wu, C. (2022). Application of hybrid neural network in discharge coefficient prediction of triangular labyrinth weir. Flow Measurement and Instrumentation, 83, 102108. DOI: https://doi.org/10.1016/j.flowmeasinst.2021.102108
Zhu, X., Si, J., Xie, W., & Tan, L. (2024). Discussion of “Discharge coefficient of symmetrical stepped and triangular labyrinth side weirs in a subcritical flow regime”. Journal of Irrigation and Drainage Engineering, 150(3), 07024005. DOI: https://doi.org/10.1061/JIDEDH.IRENG-10230
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






