Decision support system for the hydrological management of the Guayas River

Authors

DOI:

https://doi.org/10.24850/j-tyca-2025-01-06

Keywords:

Guayas River, hydrological decision support system, basin management, hydrological model, real-time data, flood

Abstract

The Guayas River basin in Ecuador is the largest on the Pacific slope of South America, with an area of 34 500 km2 (12.57 % of the national territory). Within the basin, the Daule-Peripa reservoir constitutes the largest water reserve in the country, guaranteeing water for the consumption of more than eight million people, in addition to irrigation and hydroelectric generation. A Hydrological Decision Support System (SHAD) has been developed to efficiently manage water resources in the Guayas river basin, improve the energy production of hydroelectric plants and provide early warning of floods downstream of the plants. SHAD integrates a real-time data acquisition module, with the hydrological model of tanks in charge of estimating the inflows to the reservoirs on an hourly scale, and the control module on which the managers interact. The hydrological model has been calibrated separately for the Daule-Peripa and Baba basins with hourly data from the period 2019-2021. For the Baba basin, the Nash-Sutcliffe coefficient for validation at daily and hourly scales were 0.77 and 0.71, respectively, as well as 0.62 and 0.49 for Daule-Peripa. The preliminary comparative analysis of the management of the water resources of the basin, carried out since the commissioning of SHAD shows evidence of significant improvements.

References

Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir optimization in water resources: A review. Water resources management, 28(11), 3391-3405.

Alley, R. B., Emanuel, K. A., & Zhang, F. (2019). Advances in weather prediction. Science, 363(6425), 342-344.

Bendix, J., Gämmerler, S., Reudenbach, C., & Bendix, A. (2003). A Case study on rainfall dynamics during El Niño/La Niña 1997/99 in Ecuador and surrounding areas as inferred from GOES-8 and TRMM-PR observations niederschlagsdynamik während El Niño/La Niña 1997/99 in Ecuador und benachbarten Gebieten—Eine Fallstudie auf der Basis von GOES-8-und TRMM-PR-Daten. Erdkunde, 57(2), 81-93.

Beven, K. J. (2011). Rainfall-runoff modelling: The primer. New York, USA: John Wiley & Sons.

Bosznay, M. (1989). Generalization of SCS curve number method. Journal of irrigation and drainage engineering, 115(1), 139-144.

Cenace, Centro Nacional de Control de Energía. (2022). Informe operativo anual 2021. Recuperado de http://www.cenace.gob.ec/informe-anual-2021/

Chow, V. T. (1964). Handbook of applied hydrology: A compendium of water-resources technology. New York: McGraw-Hill.

Dawson, C. W., & Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80-108.

De Guenni, L. B., García, M., Munoz, A. G., Santos, J. L., Cedeño, A., Perugachi, C., & Castillo, J. (2017). Predicting monthly precipitation along coastal Ecuador: ENSO and transfer function models. Theoretical and Applied Climatology, 129(3-4), 1059-1073.

Dion, P., Martel, J.-L., & Arsenault, R. (2021). Hydrological ensemble forecasting using a multi-model framework. Journal of Hydrology, 600, 126537.

Dirks, K. N., Hay, J. E., Stow, C. D., & Harris, D. (1998). High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data. Journal of Hydrology, 208(3-4), 187-193.

Hersh, M. A. (1999). Sustainable decision making: The role of decision support systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 29(3), 395-408.

Hidalgo-Proaño, M. (2017). Variabilidad climática interanual sobre el Ecuador asociada a ENOS. Revista Cienciamérica, 6(2), 42-47.

Jajarmizadeh, M., Harun, S., & Salarpour, M. (2012). A review on theoretical consideration and types of models in hydrology. Journal of Environmental Science and Technology, 5(5), 249-261.

Johnson, L. E. (1986). Water resource management decision support systems. Journal of Water Resources Planning and Management, 112(3), 308-325.

Kingston, G. B., Maier, H. R., & Lambert, M. F. (2005). Calibration and validation of neural networks to ensure physically plausible hydrological modeling. Journal of Hydrology, 314(1-4), 158-176.

Knudsen, J., Thomsen, A., & Refsgaard, J. C. (1986). WATBAL: A semi-distributed, physically based hydrological modelling system. Hydrology Research, 17(4-5), 347-362.

Kuok, K. K., Harun, S., & Chan, C. P. (2011). Investigation best number of tanks for hydrological tank model for rural catchment in humid region. Journal of The Institution of Engineers, 72, 1-11.

Mariotti, A., Ruti, P. M., & Rixen, M. (2018). Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate and Atmospheric Science, 1(1), 1-4.

Molteni, F., Buizza, R., Palmer, T. N., & Petroliagis, T. (1996). The ECMWF ensemble prediction system: Methodology and validation. Quarterly Journal of the Royal Meteorological Society, 122(529), 73-119.

Mysiak, J., Giupponi, C., & Rosato, P. (2005). Towards the development of a decision support system for water resource management. Environmental Modelling & Software, 20(2), 203-214.

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290.

Palmer, W. C., & Havens, A. V. (1958). A graphical technique for determining evapotranspiration by the Thornthwaite method. Monthly Weather Review, 86(4), 123-128.

Paz, J., Del Jesús, M., Kelman, R., Navas, S., Okamura, L., & Feliu, E. (2019). Vulnerabilidad al cambio climático y medidas de adaptación de los sistemas hidroeléctricos en los países andinos. Washington, DC, USA: Banco Interamericano de Desarrollo.

Perez-Suarez, R. A., & Cedeño-Villarroel, M. A. (2021). Optimización del sistema de descarga de agua del vertedero de la presa Daule Peripa (trabajo fin de master). Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador.

Persson, A. (2001). User guide to ECMWF forecast products. Recuperado de http://cedadocs.ceda.ac.uk/1218/1/ECMWF_user_guide_2001.pdf

Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille, C., & Le Moigne, P. (2017). Evaluation of gridded meteorological datasets for hydrological modeling. Journal of Hydrometeorology, 18(11), 3027-3041.

Recalde-Coronel, G. C., Barnston, A. G., & Muñoz, Á. G. (2014). Predictability of December–April rainfall in coastal and Andean Ecuador. Journal of Applied Meteorology and Climatology, 53(6), 1471-1493.

Rhynsburger, D. (1973). Analytic delineation of Thiessen polygons. Geographical Analysis, 5(2), 133-144.

Rossum, G. (1995). Python reference manual. Recuperado de https://ir.cwi.nl/pub/5008

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., Van den Dool, H. M., Pan, H.-L., Moorthi, S., Behringer, D., Stokes, D., Peña, M., Lord, S., White, G., Ebisuzaki, W., Peng, P., & Xie, P. (2006). The NCEP Climate Forecast System. Journal of Climate, 19(15), 3483-3517. DOI: 10.1175/JCLI3812.1

Sitterson, J., Knightes, C., Parmar, R., Wolfe, K., Avant, B., & Muche, M. (2018). An overview of rainfall-runoff model types. Recuperado de https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3977&context=iemssconference

Smith, P. J., Pappenberger, F., Wetterhall, F., Del Pozo, J. T., Krzeminski, B., Salamon, P., Muraro, D., Kalas, M., & Baugh, C. (2016). On the operational implementation of the European Flood Awareness System (EFAS). In: Flood forecasting (pp. 313-348). Amsterdam, The Netherlands: Elsevier.

Song, J.-H., Her, Y., Park, J., & Kang, M.-S. (2019). Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and Tank model. Journal of Hydrology, 574, 574-587.

Suryoputro, N., Suhardjono, Soetopo, W., & Suhartanto, E. (2017). Calibration of infiltration parameters on hydrological tank model using runoff coefficient of rational method. AIP Conference Proceedings, 1887(1), 020056. DOI: 10.1063/1.5003539

Tschantz, B. A. (s.f.). SCS user-defined storm hydrograph (SCS-USH). In: Hydraulics and hydrology in the small computer age (pp. 1274-1279). Reston, USA: ASCE.

Wang, C., Deser, C., Yu, J. Y., DiNezio, P., & Clement, A. (2017). El Niño and Southern Oscillation (ENSO): A review. Coral reefs of the eastern tropical Pacific: Persistence and loss in a dynamic environment, 85-106. DOI: 10.1007/978-94-017-7499-4_4

Wardropper, C., & Brookfield, A. (2022). Decision-support systems for water management. Journal of Hydrology, 610, 127928.

Works, D. of P. (1995). California culvert practice, second. Sacramento, USA: DPW, Division of Highways Sacramento, CA.

Published

2025-01-01

How to Cite

Campo-Carrera, J. M., Cedeño-Villarroel, M. A., Boada-Herrera, M., & Udias, A. (2025). Decision support system for the hydrological management of the Guayas River. Tecnología Y Ciencias Del Agua, 16(1), 237–294. https://doi.org/10.24850/j-tyca-2025-01-06