Municipal wastewater treatment: Are UASB + microalgal open ponds an option?

Authors

DOI:

https://doi.org/10.24850/j-tyca-2025-03-10

Keywords:

Costs of wastewater treatment plants, treated water reuse, UASB Reactor, Mexican environmental standards, microalgae lagoons, municipal wastewater treatment

Abstract

The technical and economic advantages of municipal wastewater treatment trains based on lagoons with microalgae, after treatment with UASB-type anaerobic reactors, are highlighted in comparison with the conventional technologies most used in the Mexican municipal area. Microalgae absorb inorganic compounds (macro and micronutrients) and reduce the inorganic and organic load present in wastewater with the consequent generation of biomass. This is the main advantage of this technology over the other conventional ones mostly used in the Mexican municipal sphere. The waste water treatment plant (WWTP) based on lagoons with microalgae ensures the non-emission of Greenhouse Gases (GHG) and is the only one that has the potential for the valorization of byproducts in the market through the harvesting and processing of microalgae, which , in an appropriate regional scope, where these byproducts can be commercialized, they can represent additional income for the operational support of the WWTP, being able to reach or exceed the low level of operating cost of conventional lagoon systems. The WWTP using a UASB reactor and lagoons with microalgae practically have the same investment cost as those plants with UASB and conventional lagoons. On the other hand, the investment cost of conventional lagoons without a UASB reactor is higher than that of lagoons with microalgae. Those municipalities that have conventional lagoons are candidates to convert or rehabilitate their WWTPs into lagoon systems with microalgae where the existing infrastructure would be fully utilized, which leads to a reduction in the investment cost compared to a new installation.

References

Amy, G., Brdjanovic, D., Comeau, Y., Edama, G., Orozco-García, J., & Al, E. (2017). Tratamiento biológico de aguas residuales: principios modelación y diseño. En: López-Vázquez, M. C., Buitrón-Méndez, G., García, H. A, & Cervantes-Carrillo, J. F (eds.). IWA Publishing. DOI: 10.2166/9781780409146

Bahr, M., Díaz, I., Domínguez, A., González-Sánchez, A., & Muñoz, R. (2014). Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environmental Science & Technology, 48, 573-581. DOI: 10.1021/es403596m

Chernicharo, C. A. L., Van Lier, J., Noyola, A., & Bressani-Ribeiro, T. (2015). Anaerobic sewage treatment: State of the art, constraints and challenges. Reviews in Environmental Science and Biotechnology. DOI: 10.1007/s11157-015-9377-3

Conagua, Comisión Nacional del Agua. (2007). Manual de agua potable, alcantarillado y saneamiento: diseño de lagunas de estabilización. Ciudad de México, México: Secretaría de Medio Ambiente y Recursos Naturales,

Conagua, Comisión Nacional del Agua. (2012). Agenda de Agua 2030 avances y logros 2012. Recuperado de https://www.conagua.gob.mx/Conagua07/Publicaciones/Publicaciones/SGP-10-12baja.pdf

Conagua, Comisión Nacional del Agua. (2020). Programa Nacional Hídrico 2020-2024. Recuperado de https://www.gob.mx/conagua/documentos/programa-nacional-hidrico-pnh-2020-2024

Conagua, Comisión Nacional del Agua. (2021). Situación del Subsector Agua Potable, Alcantarillado y Saneamiento. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/702445/SGAPDS-2-21-a_compressed.pdf

Craggs, R., Heubeck, S., Lundquist, T., & Benemann, J. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology a Journal of the International Association on Water Pollution Research, 63(4), 660-665.

Díaz-Trujillo, L. A., Tovar-Facio, J., Nápoles-Rivera, F., & Ponce-Ortega, J. M. (2019). Effective use of carbon pricing on climate change mitigation projects: Analysis of the biogas supply chain to substitute liquefed-petroleum gas in Mexico. Processes. DOI: 10.3390/pr7100668

García, J., Green, B., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., & Oswald, W. (2006). Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology, 97(14), 1709-1715.

Grobbelaar, J. U. (2004). Algal nutrition. In: Richmond, A. (ed.) Microalgae culture: Biotechnology and Applied Phycology (pp. 97-115). London, UK: Blackwell Publishing.

Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-415.

Maroušek, J., Maroušková, A., Gavurová, B., Tuček, D., & Strunecký, O. (2023). Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresource Technology. DOI: 10.1016/j.biortech.2023.128802

Morgan-Sagastume, J. M. (2016). Análisis del estado de las plantas de tratamiento de aguas residuales en la República Mexicana. Revista Agua y Saneamiento de la ANEAS, 64, enero-febrero. Recuperado de https://www.aneas.com.mx/_files/ugd/9e7476_df0f9400b8974fe0b57c257e948bad33.pdf

Morgan-Sagastume, J. M., Castro-Martínez, M., & Noyola, A. (2022). Tecnologías para el desarrollo de un esquema integral de tratamiento de aguas residuales en la Península de Yucatán. Recuperado de https://www.amigosdesiankaan.org/guias-y-manuales/

Mustafa, E., Phang, S., & Chu, W. (2012). Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. Journal of Applied Phycology. DOI: 10.1007/s10811-011-9716-x

Noyola, A., Padilla, A., Morgan-Sagastume, J. M., Güereca, L., & Hernández, F. (2012). Typology of municipal wastewater treatment technologies in Latin America. Clean-Soil-Air-Water, 40(9), 926-932. DOI: 10.1002/clen.201100707

Noyola, A., Morgan-Sagastume, J. M., & Güereca, L. (2013). Selección de tecnologías para el tratamiento de aguas residuales municipales. Guía de apoyo para ciudades pequeñas y medianas. Ciudad de México, México: Instituto de Ingeniería, Universidad Nacional Autónoma de México.

Noyola, A., Paredes, M., Morgan-Sagastume, J. M., & Güereca, P. (2016). Reduction of greenhouse gas emissions from municipal wastewater treatment in Mexico based on technology selection. Clean-Soil-Air-Water, 44(9), 1091-1098. DOI: 10.1002/clen.201500084

Orta, M. T., Monje-Ramírez, I., Velasquez-Orta, S., Rodríguez-Muñiz, V., & Yáñez-Noguez, I. (2017). Ozone for microalgae biomass harvesting from wastewater. Ozone Science and Engineering, 39, 264-272. DOI: 10.1080/01919512.2017.1322488

Orta, M. T., Velasquez-Orta, S., Monje-Ramírez, I., & Yañez, I. (2021). Novedoso sistema a escala piloto para el tratamiento agua residual/lixiviado y la captura de dióxido de carbono utilizando microalgas y ozonoflotación (ATZINTLI). Revista H2O, 7(27), 34-36.

Park, J., & Craggs, R. (2011). Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Water Science & Technology, 63(8), 1758-1764. DOI: 10.2166/wst.2011.114

Semarnat, Secretaría de Medio Ambiente y Recursos Naturales. (2022). Norma Oficial Mexicana NOM-001 SEMARNAT-2021. Norma que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. Recuperado de https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0

South Australian Local Government Association, Flinders University & South Australian Department for Health and Wellbeing (2020). High Rate Algal Pond (HRAP) Design Guideline. An element in CWMS Wastewater Treatment Trains. Adelaide, Australia: South Australian Local Government Association.

UNICEF, Fondo de las Naciones Unidas para la Infancia. (2022) Guía para la elaboración de estrategias financieras en materia de agua, saneamiento e higiene (WASH). New York, USA: Fondo de las Naciones Unidas para la Infancia.

Velasco, A., Franco Morgado, M., Saldívar, A., Cuetero Martínez, Y., Buitrón, G., De-los-Cobos Vasconcelos, D., Monroy, O., & González Sánchez, A. (2023). Organic leachate and biogas utilization in outdoor microalgae cultivation under alkaline conditions at pilot-scale. Waste and Biomass Valorization. DOI: 10.1007/s12649-023-02223-3

Velasquez-Orta, S. B., García-Estrada, R., Monje-Ramírez, I., Harvey, A., & Orta, M. T. (2014). Microalgae harvesting using ozoflotation: Effect on lipid and FAME recoveries. Biomass and Bioenergy, 70, 356-363. DOI: 10.1016/j.biombioe.2014.08.022

Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707-718.

Zhang, B., Li, W., Guo, Y., Zhang, Z., Shi, W., Cui, F., Lens, P. N. L., & Tay, J. H. (2020). Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 118, 109563. DOI: 10.1016/j.rser.2019.109563

Published

2025-05-01

How to Cite

Morgan-Sagastume, J. M., & Orta-Ledesma, M. T. (2025). Municipal wastewater treatment: Are UASB + microalgal open ponds an option?. Tecnología Y Ciencias Del Agua, 16(3), 412–442. https://doi.org/10.24850/j-tyca-2025-03-10