Modelling flood map during Alex hurricane: Simulation enforced by multisensory precipitation in the city of Monterrey, Mexico
DOI:
https://doi.org/10.24850/j-tyca-2025-05-03Palabras clave:
Flood map, HEC-HMS, HEC-RAS 2D, Monterrey, MRMS-QPE precipitation, Santa Catarina RiverResumen
Alex hurricane was one of the most intense tropical cyclones in the North Atlantic that caused fatalities and loses in the Northeast of Mexico due to the flash floods. Flood hazard mapping is a vital tool to assess inundation areas, which can be simulated using hydraulic and hydrologic models. This study describes the modelling of a flood event during Alex hurricane in the Santa Catarina River Watershed, Northeast of Mexico, applying HEC-HMS and two dimensional (2D) HEC-RAS models forced with Multi Radar Multi Sensor-Quantitative Precipitation Estimation (MRMS-QPE). A HEC-HMS model was developed forced by (MRMS-QPE) as input to simulate discharges along the Santa Catarina River. The simulated discharges were introduced as border conditions along the mainstream of the Santa Catarina River inside a HEC-RAS 2D model to simulate a flood map along the mainstream of the Santa Catrina River. The observed against the simulated peak discharges achieved a r2 of 0.97 and a Nash-Sutcliffe coefficient of 0.97. The observed against the simulated accumulated discharges achieved a r2 of 0.99 and a Nash-Sutcliffe coefficient of 1.0. The observed against the simulated stages achieved a r2 of 0.74 and, a Nash-Sutcliffe coefficient of 0.68. The use of HEC-HMS and HEC-RAS 2D models coupled with MRMS-QPE shows that these models are user friendly to setup, the model has stability and the capacity to simulate flood maps along the whole mainstream of the Santa Catarina River with good results.
Citas
Aguilar-Barajas, I., Sisto, N., & Ramirez, A. (2015). Agua para Monterrey. Monterrey, México: D. R. Agencia Promotora de Publicaciones, S.A. de C.V.
Akossou, A. Y. J., & Palm, R. (2013). Impact of data structure on the estimators R-square and adjusted R-square in linear regression. International Journal of Computer Mathematics, 20(3), 84-93. Recovered from https://www.researchgate.net/publication/289526309_Impact_of_data_structure_on_the_estimators_R-square_and_adjusted_R-square_in_linear_regression
Beavers, M. A. (1994). Floodplain determination using HEC-2 and Geographic Information Systems (Master’s Thesis). The University of Texas, Austin, USA.
Boskidis, I., Gikas, G. D., Sylaios, G. K., & Tsihruntzis, V. A. (2012). Hydrologic and water quality modeling of lower Nestos River Basin. Water Resource Management, 26, 3023-3051. DOI: 10.1007/s11269-012-0064-7
Burgan, H. I., & Icaga, Y. (2019). Flood analysis using adaptive hydraulics (AdH) model in Akarcay Basin. Teknik Dergi, 30(2), 9029-9051. DOI: 10.18400/tekderg.416067
Cázares-Rodríguez, J. E. (2016). Evaluation of flood mitigation strategies for the Santa Catarina watershed using a multi-model approach (Doctoral dissertation). Arizona State University. Recovered from https://www.proquest.com/openview/f8be344e76d8c2b12bae24b17b20ab54/1?pq-origsite=gscholar&cbl=18750
Cázares-Rodríguez, J. E., Vivoni, E. R., & Mascaro, G. (2017). Comparison of two watershed models for addressing stakeholder flood mitigation strategies: Case study of Alex hurricane in Monterrey, Mexico. Journal of Hydrologic Engineering, 22(9), 05017018. DOI: 10.1061/(ASCE)HE.1943-5584.0001560
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer J. Computer Science, 7, 623. DOI: 10.7717/peerj-cs.623
Chu, X., & Steinman, A. (2009). Event and continuous hydrologic modelling with HEC-HMS. Journal of Irrigation and Drainage Engineering, 135(1), 119-124. DOI: 10.1061/(ASCE)0733-9437(2009)135:1(119)
Conagua, Comisión Nacional del Agua. (2015). Sistema de Información Hidrológica (SIH). Recovered from https://hidros:hidros@sih.conagua.gob.mx/
Da-Silva, M. G., De-Aguiar-Netto, A. D. O., De-Jesus-Neves, R. J., Do- Vasco, A. N., Almeida, C., & Faccioli, G. G. (2015). Sensitivity analysis and calibration of hydrological modeling of the watershed Northeast Brazil. Journal of Environmental Protection, 6(08), 837. DOI: 10.4236/jep.2015.68076
Fuentes-Mariles, O. A., Franco, V., Luna-Cruz, F., Vélez-Morales, L., & Morales-Rodríguez, H. L. (2014). Caracterización fluvial e hidráulica de las inundaciones en México. Convenio CNA-SGTGASIR-09/2014, organismo de cuenca X, Golfo centro ciudad de Veracruz, Veracruz ríos Jamapa y Cotaxtla. México, DF, México: Comisión Nacional del Agua, Instituto de Ingeniería, Universidad Nacional Autónoma de México.
Garcia, M., Juan, A., & Bedient, P. (2020). Integrating reservoir operations and flood modelling with HEC-RAS 2D. Water, 12(8), 2259. DOI: 10.3390/w12082259
González-Alemán, J. J., Evans, J. L., & Kowaleski, A. M. (2018). Use of ensemble forecasts to investigate synoptic influences on the structural evolution and predictability of Alex hurricane (2016) in the midlatitudes. Monthly Weather Review, 146(10), 3143-3162. DOI: 10.1175/MWR-D-18-0015.1
Google Map©. (2022). Google Maps. Recovered from https://www.google.com/maps
Halwatura, D., & Najim, M. M. M. (2013). Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling & Software, 46, 155-162. DOI: 10.1016/j.envsoft.2013.03.006
Hernández, U. A., & Bravo L. C. (2010). Reseña del huracán “Alex hurricane” del océano Atlántico. México, DF, México: Secretaría de Medio Ambiente y Recursos Naturales. Recovered from https://smn.conagua.gob.mx/tools/DATA/Ciclones%20Tropicales/Ciclones/2010-Alex.pdf
INEGI, Instituto Nacional de Estadística y Geografía. (2015). Instituto Nacional de Estadística y Geografía. Recovered from https://www.inegi.org.mx/
Iowa Environmental Mesonet. (2022). Disclaimer. Recovered from https://mesonet.agron.iastate.edu/disclaimer.php
Kitzmiller, D., Miller, D., Fulton, R., & Ding, F. (2013). Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. Journal of Hydrologic Engineering, 18(2), 133-142. DOI: 10.1061/(ASCE)HE.1943-5584.0000523
Knebl, M. R., Yang, Z. L., Hutchison, K., & Maidment, D. R. (2005). Regional scale flood modelling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 75(4), 325-336. DOI: 10.1016/j.jenvman.2004.11.024
Mihu-Pintilie, A., Cîmpianu, C. I., Stoleriu, C. C., Pérez, M. N., & Paveluc, L. E. (2019). Using high-density LiDAR data and 2D streamflow hydraulic modelling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water, 11, 1832. DOI: 10.3390/w11091832
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50, 885-900. DOI: 10.13031/2013.23153
Mudashiru, R. B., Sabtu, N., Abustan, I., & Balogun, W. (2021). Flood hazard mapping methods: A review. Journal of Hydrology, 603, 126846. DOI: 10.1016/j.jhydrol.2021.126846
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1 – A discussion of principles. Journal of Hydrology, 10(3), 282-290. DOI: 10.1016/0022-1694(70)90255-6
Návar, J., & Synnott, T. J. (2000). Surface runoff, soil erosion, and land use in Northeastern Mexico. Terra Latinoamericana, 18(3), 247-253. Recovered from https://www.redalyc.org/pdf/573/57318308.pdf
Nieto-Butrón, J. J., Ramírez-Serrato, N. L., Barco-Coyote, S., Yépez-Rincon, F. D., & Jácome-Paz, M. P. (April, 2024). Impact of vegetation on urban open-channel flow: Practical experiment with 2D IBER hydraulic simulations in Monterrey, Mexico. Vienna, Austria: EGU General Assembly 2024. DOI: 10.5194/egusphere-egu24-11106
NOAA, National Oceanic and Atmospheric Administration. (2022). Multi-Radar/Multi-Sensor System (MRMS). Recovered from https://www.nssl.noaa.gov/projects/mrms/
Pasch, R. J. (2010). Tropical cyclone report Alex hurricane (AL012010) 25 June-2 July. Miami, USA: NOAA National Hurricane Center. Recovered from https://ialert.com/docs/TCR-AL012010_Alex.pdf
Pistocchi, A., & Mazzoli, P. (2002). Use of HEC-RAS and HEC-HMS models with ArcView for hydrologic risk management. International Congress on Environmental Modelling Software, Lugano, Switzerland. 138. Recovered from https://scholarsarchive.byu.edu/iemssconference/2002/all/138
Sánchez-Rodríguez, R., & Cavazos, T. (2015). Capítulo 1. Amenazas naturales, sociedad y desastres. En: Cavazos, T. (ed.). Conviviendo con la naturaleza: el problema de los desastres asociados a fenómenos hidrometeorológicos y climáticos en México (pp. 1-45). Tijuana, México: REDESClim, México, Ediciones ILCSA. Recovered from http://usuario.cicese.mx/~tcavazos/pdf/T_Cavazos_Libro_REDESClim_2015.pdf
Schrader, E. K., & Balli, J. A. (2018). Presa Rompepicos– A 109 meters high RCC dam at Corral Des Palmas with final design during construction. In: Roller compacted concrete dams (193-201). London, UK: Routledge.
SMN, Servicio Meteorológico Nacional. (2010). Normales climatológicas por estado. Mexico, DF, México: Secretaría de Medio Ambiente y Recursos Naturales. Recovered from http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=184&tmpl=component
Stella, J. M. (2022). Mapping floods of Fenton River, an ungauged stream in Connecticut. Journal of Water Resource and Protection, 14(7), 531-541. DOI: 10.4236/jwarp.2022.147028
Stella, J. M. (2023). Modeling Alex hurricane: Flood map simulation applying multisensor grid precipitation, Monterrey, Mexico. Revista Ambiente & Água, 18, 2911. DOI: 10.4136/ambi-agua.2911
Thakur, B., Parajuli, R., Kalra, A., Ahmad, S., & Gupta, R. (2017). Coupling HEC-RAS and HEC-HMS in precipitation runoff modelling and evaluating flood plain inundation map. In: Proceedings of the World Environmental and Water Resources Congress 2017 (pp. 240-251). Sacramento, USA, 21-25 May. DOI: 10.1061/9780784480625.022
USACE, U.S. Army Corps of Engineers. (2022). HEC-HMS 4.10 User’s manual. Hydrologic Engineering Center. Recovered from https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/latest
USGS, United States Geological Survey. (2022). The National Map-3D Viewer. Recovered from https://viewer.nationalmap.gov/basic/
Zarco, A. I., & Magaña-Lona, D. (2014). Memoria de trabajo en la Gerencia de Aguas Superficiales e Ingeniería de Ríos, Conagua. Recovered from http://ri.uaemex.mx/handle/20.500.11799/26566
Zhang, J., Qi, Y., Howard, K., Langston, C., Kaney, B., Ortega, K., Smith, T., Stevens, S. E., & Nelson, B. R. (2013). Retrospective analysis of high-resolution multi-radar multi-sensor QPEs for the Unites States. AGU Fall Meeting Abstracts, 2013, H41I-1357. Recovered from https://ui.adsabs.harvard.edu/abs/2013AGUFM.H41I1357Z/abstract
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial