Geospatial analysis of flood impact sites from a database compiled by the Guadalajara fire department during the rainy season of the 2010-2022 period
DOI:
https://doi.org/10.24850/j-tyca-2025-02-06Keywords:
Flood, recurrence, hazard, civil protection, urban areaAbstract
This paper analyzed Flood Impact Sites (SAI, abbreviated in Spanish) attended by the Coordination of Civil Protection of Guadalajara (CMPCG, abbreviated in Spanish) from a geospatial approach. It also addressed the distribution of how, when, and where floods affected during the last 12 years (2010-2022). The case study is the urban area of the municipality of Guadalajara. The frequency, distribution and intensity of floods are analyzed yearly and for the entire study period. We obtained a flow depth categorization map using neighborhoods' historical flood level height, where most range from medium to low. Subsequently, the services attended by CMPCG's operational area bases were analyzed, where the most affected sectors are the public roads and the residential sector. We worked with 3,676 SAI contained in the CMPCG flood inventory. The study allows to identify 63 Recurrent Flood Sites (SiRI, abbreviated in Spanish) with the information of the SAI. At the colony scale, they correspond to 65 Recurrent Flood Neigborhoods (CRI, abbreviated in Spanish). In addition, 20 Critical Flood Sites (SiCI, abbreviated in Spanish) are displayed, which, in addition to meeting the recurrence criteria, also consider the incidence criterion both in the domicile and crossing fields. We can highlight the daily work of the Municipal Coordination of Civil Protection of Guadalajara (CMPCG) and, specifically, the staff of the Operational Area since this study was carried out based on the information gathered by this staff during each rainy season. This study contributes to the first stage of Integrated Risk Management by analyzing and identifying flooding sites in Guadalajara.
References
Alcocer-Yamanaka, V. H., Varela, J. M. R., Bourguett-Ortiz, V. J., Llaguno-Guilberto, O. J., & Góngora, P. M. A. (2016). Metodología para la generación de mapas de riesgo por inundación en zonas urbanas. Tecnología y ciencias del agua, 7(5), 33-55.
Avila-Aceves, E., Rocha-Plata, W., Mojardin-Armenta, S., & Rangel-Peraza, J. (2023). Geospatial modelling of floods: A literature review. Stochastic Environmental Research and Risk Assessment, 1-20. DOI: 10.1007/s00477-023-02505-1
Bartolomé, M. A. (2006). Pergamino, la inundación y sus versiones. Avá. Revista de Antropología, 9, 132-146. Recuperado de https://www.redalyc.org/pdf/1690/169014140009.pdf
Bulti, D. T., & Abebe, B. G. (2020). A review of flood modeling methods for urban pluvial flood application. Modeling Earth Systems and Environment, 6(3), 1293-1302. DOI: 10.1007/s40808-020-00803-z
Conagua, Comisión Nacional del Agua. (2015). Comunicado de prensa No. 811-15. Temporada de ciclones tropicales 2015. Ciudad de México, México: Servicio Meteorológico Nacional.
Constantino, M., & Dávila, R. (2011). Una aproximación a la vulnerabilidad y la resiliencia ante eventos hidrometeorológicos extremos en México. Política y Cultura, 36, 15-44.
Durán, J. de J. F. (2019). Guadalajara, Jalisco: vulnerabilidad a inundaciones. Geocalli, 20(40), 78. Recuperado de http://www.geografia.cucsh.udg.mx/sites/default/files/geocalli_40_final_3.pdf
Elkhrachy, I., Pham, Q. B., Costache, R., Mohajane, M., Rahman, K. U., Shahabi, H., Linh, N. T., & Anh, D. T. (2021). Sentinel-1 remote sensing data and hydrologic engineering centres river analysis system two-dimensional integration for flash flood detection and modelling in New Cairo City, Egypt. Journal of Flood Risk Management, 14(1):12692
EM-DAT. (2022). EM-DAT. Recuperado de http://www.emdat.be/database
GacetaUdeG. (2010). Guadalajara y sus desastres. Recuperado de http://www.gaceta.udg.mx/Guadalajara-y-sus-desastres/
Gobierno GDL. (2023). Obras Públicas - Control de Obra Pública 2023. Recuperado de https://enlinea.guadalajara.gob.mx/obras/obrasPublicas/listadoObras.php
Haer, T., Botzen, W. J. W., Van, V., Connor, H., Zavala-hidalgo, J., Eilander, D. M., & Ward, P. J. (2018). Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: A country-scale study for Mexico. Philosophical Transactions of the Royal Society, 376. DOI: 10.6084/m9.figshare.c.4060277
Herrera, A. del C. V., & Huizar, P. C. (2005). El crecimiento urbano y las características socioeconómicas de la zona metropolitana de Guadalajara. Carta Económica Regional, 94(13). DOI: 10.32870/cer.v0i94.5610
IAM, Instituto de AstronomÃa y Meteorología. (2023). Climatología. Recuperado de http://iam.cucei.udg.mx/climatologia
IFRC, International Federation of Red Cross and Red Crescent Societies. (2020). 2020 annual report. Recuperado de https://www.ifrc.org/sites/default/files/2021-09/20210902_AnnualReport_ONLINE.pdf
Kidson, R., & Richards, K. S. (2005). Flood frequency analysis: Assumptions and alternatives. Progress in Physical Geography, 29(3), 392-410. Recuperado de http://ppg.sagepub.com/content/29/3/392.abstract
López, J., & Francés, F. (2013). Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 17(8), 3189-3203. DOI: 10.5194/hess-17-3189-2013
López, M., Magaña, V., & Pérez, T. (2022). Riesgo de inundaciones urbanas repentinas en la Zona Metropolitana de Guadalajara, México. Investigaciones Geográficas, (108), 21. DOI: 10.14350/rig.60547
Maranzoni, A., Dória, M., & Rizzo, C. (2023). Quantitative flood hazard assessment methods: A review. Journal of Flood Risk Management, 16(1). DOI: 10.1111/jfr3.12855
Merz, B., Dottori, F., Aerts, J. C. J. H., Bates, P., Bertola, M., & Kemter, M. (2019). Causes, impacts and patterns of disastrous river floods. Earth & Environment, 2, 592-609. DOI: 10.1038/s43017-021-00195-3
Mishra, A., Mukherjee, S., Merz, B., Singh, V. P., Wright, D. B., Villarini, G., Paul, S., Kumar, N., Khedun, C. P., Niyogi, D., Schumann, G., & Stedinger, J. R. (2022). An overview of flood concepts, challenges, and future directions. Journal of Hydrologic Engineering, 27(6). DOI: 10.1061/(ASCE)HE.1943-5584.0002164
Ocampo, O. L., & Vélez-Upegui, J. J. (2014). Análisis comparativo de modelos hidrológicos de simulación continua en cuencas de alta montaña: caso del rÃo Chinchiná. Revista de Ingeniería. Universidad de Medellín, 13(24), 43-58.
ONU, Organización de las Naciones Unidas. (2021). ONU-Habitat - SequÃas, tormentas e inundaciones: el agua y el cambio climático dominan la lista de desastres. Recuperado de https://onuhabitat.org.mx/index.php/sequias-tormentas-e-inundaciones-el-agua-y-el-cambio-climatico-dominan-la-lista-de-desastres
Ornelas, L. V., Castillo, M. del R., & Salazar, A. (2005). Las inundaciones en la zona metropolitana de Guadalajara. Carta Económica Regional, 9. DOI: 10.32870/cer.v0i91.5633
Ortiz, E. (2023). Un temporal más, y detectan ocho nuevos puntos de inundación; tres de ellos, de alta prioridad. Recuperado de https://udgtv.com/noticias/un-temporal-mas-y-detectan-ocho-nuevos-puntos-de-inundacion-tres-de-ellos-de-alta-prioridad/66989
Pistrika, A., Tsakiris, G., & Nalbantis, I. (2014). Flood depth-damage functions for built environment. Environmental Processes, 1(4), 553-572. DOI: 10.1007/s40710-014-0038-2
Salas, M., & Jiménez, P. (2014). Inundaciones. Serie de FascÃculos (Versión el). México, DF, México, CENAPRED.
Salazar, A. G., Juárez, A., & Ramírez, L. L. (2008). Curvas de intensidad, duración y periodo de retorno como herramienta de análisis. Recuperado de http://sincronia.cucsh.udg.mx/salazar.htm
Salazar, S. (2013). Metodología para el análisis y la reducción del riesgo de inundaciones: aplicación en la rambla del pollo (Valencia) usando medidas de "Retención de agua en el territorioâ€. València, España: Universitat Politécnica de València.
Sedatu, SecretarÃa de Desarrollo Agrario, Territorial y Urbano. (2016). Términos de referencia para la elaboración de atlas de peligros y/o riesgos 2016. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/135433/TR_AR_231016_Pu_blico.pdf
Shaleen, J., & Lall, U. (2001). Floods in a changing climate: Does the past represent the future? Water Resources Research, 37(12):3193-3205. DOI: 10.1029/2001WR000495
SMN, Servicio Meteorológico Nacional. (2023). Información histórica. Recuperado de https://smn.conagua.gob.mx/es/ciclones-tropicales/informacion-historica
Torres, I. X., Franco, D., Souza, D., & Lattuada, M. F. (2019). Resistir a las inundaciones: afectaciones y estragos de "las lluvias†en la Zona Metropolitana de Guadalajara. Recuperado de https://www.zonadocs.mx/2019/07/30/resistir-a-las-inundaciones-afectaciones-y-estragos-de-las-lluvias-en-la-zona-metropolitana-de-guadalajara/
Vidrio-Sahagún, C. T., & He, J. (2021). Flood hazard estimation under nonstationarity using the particle filter. Geosciences, 11(1), 13. DOI: 10.3390/geosciences11010013
Villarini, G., Smith, J. A., Serinaldi, F., Ntelekos, A. A., & Schwarz, U. (2012). Analyses of extreme flooding in Austria over the period 1951-2006. International Journal of Climatology, 32(8), 1178-1192. DOI: 10.1002/joc.2331
Vojtek, M., Vojteková, J., & Pham, Q. B. (2021). GIS-based spatial and multi-criteria assessment of riverine flood potential: A case study of the Nitra River Basin, Slovakia. International Journal of Geo-Information, 10(9), 578. DOI: 10.3390/ijgi10090578
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






