Weight assessment of DRASTIC method factors within the aquifer of the Central Valley of Cochabamba, Bolivia
DOI:
https://doi.org/10.24850/j-tyca-2026-01-09Keywords:
Groundwater, vulnerability, DRASTIC, Central Valley of Cochabamba, BoliviaAbstract
In the central valley of Cochabamba, groundwater vulnerability to contamination was assessed by analyzing the weighting of factors in the DRASTIC method, using GIS tools. Four scenarios were analyzed to identify the most critical factors, revealing that their influence and vulnerability behave differently depending on the characteristics of the area. In the northwest, vulnerability was identified as medium-high to high, due to favorable conditions for recharge. In the central-eastern zone, vulnerability ranged from low to medium-low, influenced by a confining layer that provides natural protection for the aquifer. The southern zone is influenced by low slopes, fine sediment deposition and low recharge. Urban areas exhibit very low to low vulnerability. Conversely, in the far south, vulnerability varies from medium-low to medium-high due to agricultural activities near the Rocha River. Overall, the most influential parameters were found: depth to water (D), impact of the vadose zone media (I), recharge (R), aquifer media (A), hydraulic conductivity (C) and soil media (S), with weights of 5, 5, 4, 3, 3, and 3, respectively, while topography (T) showed the least influence, with a weight of 2. It is recommended to prioritize the northwest and far southern zones for further studies and participatory management plans, as well as to apply the proposed framework in fluvio-lacustrine valleys.
References
Al-Hallaq, A. H., & Elaish, B. S. A. (2012). Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, Gaza Strip-Palestine, using the DRASTIC model within GIS environment. Arabian Journal of Geosciences, 5(4), 833-847. DOI: https://doi.org/10.1007/s12517-011-0284-9
Albinet, M., & Margat, J. (1970). Groundwater pollution vulnerability mapping. Bulletin du Bureau de Researches Geologicques et Minieres Bull BRGM 2nd Series, 3(4), 13-22.
Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings (No. EPA/600/2-87/035). Ada, OK: U.S. Environmental Protection Agency.
Árcega, I., Otazo, E., Galindo, E., Acevedo, O., & Romo, C. (2015). Determinación del índice de vulnerabilidad mediante el método DRASTIC. Revista Iberoamericana de Ciencias, 2(7), 39-49.
Barbulescu, A. (2020). Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: A review. Water, 12(5), 1356. DOI: https://doi.org/10.3390/w12051356
Cabrera, J. E., Alarcón, A., Terraza, H., Maleki, D., & Lew, S. (2013). Plan de acción: área metropolitana de Cochabamba sostenible. Cochabamba, Bolivia: ICES-Banco Interamericano de Desarrollo. DOI: https://doi.org/10.13140/RG.2.1.1673.4961
Espinoza, C. (2005). Dinámica de aguas subterráneas, vulnerabilidad y riesgo de contaminación. Aplicación al acuífero de Santiago Norte. En: Peralta, J. M. (ed.). Taller de capacitación en evaluación ambiental de planteles ganaderos (pp. 69-127). Temuco, Chile: Instituto de Investigaciones Agropecuarias.
Ghielmi, G., Mondaca, G., & Luján, M. (2008). Diagnóstico sobre el nivel de contaminación de acuíferos en el distrito 9 del municipio de Cercado en la ciudad de Cochabamba y propuesta para su protección y control. Acta Nova, 4(1), 51-86.
Gijón-Yescas, G. N. (2007). Análisis espacial de la vulnerabilidad del agua subterránea a la contaminación en el estado de Yucatán, México (tesis de maestría). Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
Guppy, L., Uyttendaele, P., Villholth, K. G., & Smakhtin, V. (2018). Groundwater and sustainable development goals: Analysis of interlinkages (UNU-INWEH Report Series, Issue 04). Hamilton, Canada: United Nations University Institute for Water, Environment and Health. DOI: https://doi.org/10.53328/JRLH1810
INE, Instituto Nacional de Estadística. (2020). Censo y proyecciones de población sociales. Recuperado de https://www.ine.gob.bo/index.php/censos-y-proyecciones-de-poblacion-sociales/
López, B., Rosales, L., & Saavedra, O. (2023). Modelación hidrogeológica en el Valle Central de Cochabamba-Bolivia. Investigación & Desarrollo, 23(1). DOI: https://doi.org/10.23881/idupbo.023.1-2i
MMAyA, Ministerio de Medio Ambiente y Agua. (2014). Plan Maestro Metropolitano de Agua y Saneamiento de Cochabamba Bolivia: Informe Final. Resumen Ejecutivo. La Paz, Bolivia: Ministerio de Medio Ambiente y Agua.
Musálem, K., McDonald, M., Jiménez, F., & Laino, R. (2015). Mapeo de la vulnerabilidad del agua subterránea en dos cuencas afectadas por la represa Yacyreta en Paraguay. Tecnología y ciencias del agua, 6(6), 49-61.
Neumann-Redlin, C. M., Renner, S., & Torres, J. (2000). Hidrogeología del Valle Central de Cochabamba, Bolivia. São Paulo, Brasil: Águas Subterrâneas. Recuperado de https://aguassubterraneas.abas.org/asubterraneas/article/view/24016
NRC, National Research Council. (1993). Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty. Washington, DC: National Academy Press.
OECD. (2015). Drying wells, rising stakes: Towards sustainable agricultural groundwater use (OECD Studies on Water). Paris, France: OECD Publishing. DOI: https://doi.org/10.1787/9789264238701-en
Pacheco, F. A. L., Pires, L. M. G. R., Santos, R. M. B., & Sanches-Fernandes, L. F. (2015). Factor weighting in DRASTIC modeling. Science of the Total Environment, 505, 474-486. DOI: https://doi.org/10.1016/j.scitotenv.2014.09.092
Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography, 28(1), 32-53. DOI: https://doi.org/10.1016/j.apgeog.2007.07.008
Renner, S., & Velasco, C. (2000). Geología e hidrogeología del Valle Central de Cochabamba (Boletín No. 34). Cochabamba, Bolivia: Servicio Nacional de Geología y Minería.
Ríos-Rojas, L., & Vélez-Otálvaro, M. V. (2008). Vulnerabilidad la contaminación, zona sur acuífero del valle del Cauca, Colombia. Boletín de Ciencias de la Tierra, (23), 69-84.
Rosales, L., Saavedra, O. C., & Soruco, W. (2020). Modelación hidrogeológica en un abanico aluvial de Cochabamba-Bolivia. Investigación & Desarrollo, 20(1), 51-66. DOI: https://doi.org/10.23881/idupbo.020.1-4i
SDC & DGIA, Servicio Departamental de Cuencas & Dirección de Planificación y Gestión Integral del Agua. (2014). Plan Director de la Cuenca del río Rocha: estado de situación y propuesta de lineamientos estratégicos. La Paz, Bolivia: Impresiones Quality SRL.
SEI, Stockholm Environment Institute. (2019). Formulación y actualización del Plan Director de la Cuenca del Río Rocha, bajo un enfoque de adaptación al cambio climático (Informe técnico, Entregable J). Cochabamba, Bolivia: Stockholm Environment Institute. Recuperado de https://sites.google.com/view/giac/plan-director-pdcrr
Shirazi, S. M., Imran, H. M., & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: A review. Journal of Risk Research, 15(8), 991-1011. DOI: https://doi.org/10.1080/13669877.2012.686053
Shirazi, S. M., Imran, H. M., Akib, S., Yusop, Z., & Harun, Z. B. (2013). Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environmental Earth Sciences, 70(5), 2293-2304. DOI: https://doi.org/10.1007/s12665-013-2360-9
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






