Removal of copper salts by sodalite coated with layered double hydroxides
DOI:
https://doi.org/10.24850/j-tyca-2026-01-03Keywords:
Cations and anions adsorption, LDH, XRD, SEM, NMR, zeolite, sodalite type, water remediationAbstract
Sodalite type zeolite from silicon and aluminum post consume was coated with layered double hydroxide (molar relationship Mg2+ / Al3+ = 2) by co-precipitation to low saturated method. The structural, morphological and textural properties for the zeolite, LDH and coated material were characterized by the powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Nuclear Magnetic Resonance spectroscopy (NMR) 27Al and textural measurements. The solids obtained were used by removal Cu2+, Cl-, NO3- and SO42- from Cu(NO3)2, CuCl2 and CuSO4 solutions. Removal capacity was studied by X-ray Fluorescence spectrometry (XFR) (for Cu, Cl and S) and UV-vis spectroscopy (NO3-), the results were showed the sodalite coated with LDH retained simultaneous uptake cations and anions Cu2+ (9.26 mmol*g-1), Cl- (9.34 mmol*g-1), SO42- (8.82 mmol*g-1) and NO3- (14.41 mmol*g-1). These results show zeolites coated with LDH can using how removal harmful cations and anions and catalysts.
References
Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloids and Surfaces B: Biointerfaces, 63(1), 116-121. DOI: https://doi.org/10.1016/j.colsurfb.2007.11.013
Bergström, P. A., Lindgren, J., & Kristiansson, O. (1991). An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution. The Journal of Physical Chemistry, 95(22), 8575-8580. DOI: https://doi.org/10.1021/j100175a031
Bernal, J. P., & Railsback, L. B. (2008). Introducción a la tabla periódica de los elementos y sus iones para ciencias de la tierra. Revista Mexicana de Ciencias Geológicas, 25(2), 236-246.
Bezerra, B. G. P., Bieseki, L., Da Silva, D. R., & Pergher, S. B. C. (2019). Development of a zeolite A/LDH composite for simultaneous cation and anion removal. Materials, 12(4), 661. DOI: https://doi.org/10.3390/ma12040661
Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., Masini, C. M., & Mattii, G. B. (2021). Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8), 1547. DOI: https://doi.org/10.3390/agronomy11081547
Chung, J., Lee, J., Kim, J. K., Kim, M., Lee, K. S., Kim, S. J., Lee, M. H., & Yu, T. (2020). An analytical method to characterize the crystal structure of layered double hydroxides: Synthesis, characterization, and electrochemical studies of zinc-based LDH nanoplates. Journal of Materials Chemistry A, 8(17), 8692-8699. DOI: https://doi.org/10.1039/D0TA01774D
Contini, A., Jendrlin, M., Al-Ani, A., & Zholobenko, V. (2024). Structural and acidic properties of ion-exchanged mazzite. Petroleum Chemistry, 64(3), 1-10. DOI: https://doi.org/10.1134/S0965544123110099
Datt, A., Burns, E. A., Dhuna, N. A., & Larsen, S. C. (2013). Loading and release of 5-fluorouracil from HY zeolites with varying SiO₂/Al₂O₃ ratios. Microporous and Mesoporous Materials, 167, 182-187. DOI: https://doi.org/10.1016/j.micromeso.2012.09.011
Derkowski, A., Franus, W., Beran, E., & Czímerová, A. (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166(1), 47-54. DOI: https://doi.org/10.1016/j.powtec.2006.05.004
Di Bitetto, A., André, E., Carteret, C., Durand, P., & Kervern, G. (2017). Probing the dynamics of layered double hydroxides by solid-state ²⁷Al NMR spectroscopy. The Journal of Physical Chemistry C, 121(13), 7276-7281. DOI: https://doi.org/10.1021/acs.jpcc.6b13106
Forano, C., Hibino, T., Leroux, F., & Taviot-Guého, C. (2006). Layered double hydroxides. Developments in Clay Science, 1, 1021-1095. DOI: https://doi.org/10.1016/S1572-4352(05)01039-1
García-Sosa, I., Cabral-Prieto, A., Nava, N., Navarrete, J., Olguín, M. T., Escobar, L., López-Castañares, R., & Olea-Cardoso, O. (2015). Sorption of chromium (VI) by Mg/Fe hydrotalcite-type compounds. Hyperfine Interactions, 232, 67-75. DOI: https://doi.org/10.1007/s10751-014-1117-5
Guilherme, V. A., Cunha, V. R., De Paula, E., De Araujo, D. R., & Constantino, V. R. (2022). Anti-inflammatory and analgesic evaluation of a phytochemical intercalated into layered double hydroxide. Pharmaceutics, 14(5), 934. DOI: https://doi.org/10.3390/pharmaceutics14050934
Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S. J., & Kim, Y. (2004). Synthesis, structure and heterogeneous catalytic activities of Cu-containing polymeric compounds: Anion effect and comparison of homogeneous vs. heterogeneous catalytic activity. Dalton Transactions, 17, 2697-2701. DOI: https://doi.org/10.1039/B406877G
Jagessar, R. C., & Sooknundun, L. (2011). Determination of nitrate anion in waste water from nine selected areas of coastal Guyana via a spectrophotometric method. International Journal of Research and Reviews in Applied Sciences, 7(2), 203-212.
Ji, Y., Zhang, X., Gao, J., Zhao, S., Dou, Y., Xue, Y., & Chen, L. (2020). Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides. Ecotoxicology and Environmental Safety, 188, 109887. DOI: https://doi.org/10.1016/j.ecoenv.2019.109887
Kumari, S., Sharma, V., Soni, S., Sharma, A., Thakur, A., Kumar, S., Dhama, K., Sharma, A. K., & Bhatia, S. K. (2023). Layered double hydroxides and their tailored hybrids/composites: Progressive trends for delivery of natural/synthetic-drug/cosmetic biomolecules. Environmental Research, 231, 117171. DOI: https://doi.org/10.1016/j.envres.2023.117171
Lee, H., Wu, X., & Sun, L. (2020). Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation. Nanoscale, 12(7), 4187-4218. DOI: https://doi.org/10.1039/C9NR10437B
Li, H., Li, S., Guan, R., Jin, Z., Xiao, D., Guo, Y., & Li, P. (2024). Modulating the surface concentration and lifetime of active hydrogen in Cu-based layered double hydroxides for electrocatalytic nitrate reduction to ammonia. ACS Catalysis, 14(16), 12042-12050. DOI: https://doi.org/10.1021/acscatal.4c03245
Liu, S., Lian, X., Yue, B., Xu, S., Wu, G., Chai, Y., Zhang, Y., & Li, L. (2024). Control of zeolite local polarity toward efficient xenon/krypton separation. Journal of the American Chemical Society, 146(12), 8335-8342. DOI: https://doi.org/10.1021/jacs.3c13994
López, J. A., Toro, R. A., Romero-Bohórquez, A. R., Quintana, J. H., & Henao, J. A. (2020). Synthesis of zeolites P and evaluation of their activity as new and reusable heterogeneous catalysts in a three-component ABB’Povarov model reaction. Universitas Scientiarum, 25(3), 385-407. DOI: https://doi.org/10.11144/Javeriana.SC25-3.sozp
Lucena, S. M., De Oliveira, J. C. A., Vasconcelos-Gonçalves, D. V., Lucas, L. M., Moura, P. A., Gomes-Santiago, R. G., Azevedo, D., & Bastos-Neto, M. (2022). LTA zeolite characterization based on pore type distribution. Industrial & Engineering Chemistry Research, 61(5), 2268-2279. DOI: https://doi.org/10.1021/acs.iecr.1c04897
Panfili, I., Bartucca, M. L., Ballerini, E., & Del Buono, D. (2017). Combination of aquatic species and safeners improves the remediation of copper polluted water. Science of the Total Environment, 601, 1263-1270. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.003
Pehlivan, E., & Altun, T. (2006). The study of various parameters affecting the ion exchange of Cu²⁺, Zn²⁺, Ni²⁺, Cd²⁺, and Pb²⁺ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous Materials, 134(1-3), 149-156. DOI: https://doi.org/10.1016/j.jhazmat.2005.10.052
Quintana, J. H., Aparicio, A. P., Parra, L. K., Henao, J. A., & Ríos, C. A. (2014). Estudio de parámetros de síntesis de las estructuras zeolíticas Linde Tipo A (LTA) y Faujasita (FAU) X a partir de aluminio post-consumo y diatomita, para la remoción de metales pesados. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(148), 167-180. DOI: https://doi.org/10.18257/raccefyn.162
Salgado-Gómez, N., Macedo-Miranda, M. G., & Olguín, M. T. (2014). Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff. Applied Clay Science, 95, 197-204. DOI: https://doi.org/10.1016/j.clay.2014.04.013
Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., & Mierzwa-Hersztek, M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, 311, 127461. DOI: https://doi.org/10.1016/j.jclepro.2021.127461
Teixeira, S. C. G., Mathias, L., & Canela, M. C. (2003). Recuperação de sílica-gel utilizando processos oxidativos avançados: Uma alternativa simples e de baixo custo. Química Nova, 26(6), 931-933. DOI: https://doi.org/10.1590/S0100-40422003000600025
Theiss, F. L., Couperthwaite, S. J., Ayoko, G. A., & Frost, R. L. (2014). A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. Journal of Colloid and Interface Science, 417, 356-368. DOI: https://doi.org/10.1016/j.jcis.2013.11.040
Tian, K., Tan, D., Fu, X., Zhang, Y., Yao, D., Zhong, M., Chen, R., Dong, Y., & Liu, Y. (2025). Adsorption performance of 1,4-dioxane by MCM-22 and Beta zeolites and their bio-zeolite composite system in the presence of co-contaminants. Separation and Purification Technology, 354, 128752. DOI: https://doi.org/10.1016/j.seppur.2024.128752
Vicente-Martínez, Y., Caravaca-Garratón, M., García-Onsurbe, M. D. C., & Soto-Meca, A. (2021). Silver nanoparticles functionalized with sodium mercaptoethane sulfonate to remove copper from water by the formation of a micellar phase. Separations, 8(8), 108. DOI: https://doi.org/10.3390/separations8080108
Wang, W., Zhou, J., Achari, G., Yu, J., & Cai, W. (2014). Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 33-40. DOI: https://doi.org/10.1016/j.colsurfa.2014.05.034
Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. DOI: https://doi.org/10.1016/S0167-2738(00)00632-9
Xie, Z. H., Zhou, H. Y., He, C. S., Pan, Z. C., Yao, G., & Lai, B. (2021). Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chemical Engineering Journal, 414, 128713. DOI: https://doi.org/10.1016/j.cej.2021.128713
Yamada, H., Watanabe, Y., Hashimoto, T., Tamura, K., Ikoma, T., Yokoyama, S., Tanaka, J., & Moriyoshi, Y. (2006). Synthesis and characterization of Linde A zeolite coated with a layered double hydroxide. Journal of the European Ceramic Society, 26(4-5), 463-467. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.07.018
Yang, Z. Z., Zhang, C., Zeng, G. M., Tan, X. F., Huang, D. L., Zhou, J. W., Fang, Q.-Z., Yang, K.-H., Wang H., Wei, J., & Nie, K. (2021). State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H₂/O₂ production. Coordination Chemistry Reviews, 446, 214103. DOI: https://doi.org/10.1016/j.ccr.2021.214103
Yuan, E. H., Han, R., Deng, J. Y., Zhou, W., & Zhou, A. (2024). Acceleration of zeolite crystallization: Current status, mechanisms, and perspectives. ACS Applied Materials & Interfaces, 16(23), 29521-29546. DOI: https://doi.org/10.1021/acsami.4c01774
Yuan, Y., Zhang, X., Lei, Y., Jiang, Y., Xu, Z., Zhang, S., Gao, J., & Zhao, S. (2018). Nitrogen removal by modified zeolites coated with Zn-layered double hydroxides (Zn-LDHs) prepared at different molar ratios. Journal of the Taiwan Institute of Chemical Engineers, 87, 73-82. DOI: https://doi.org/10.1016/j.jtice.2018.03.010
Yue, X., Liu, W., Chen, Z., & Lin, Z. (2017). Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight. Journal of Environmental Sciences, 53, 16-26. DOI: https://doi.org/10.1016/j.jes.2016.01.015
Zhang, Q., Li, J., Wang, X., He, G., Li, L., Xu, J., Mei, D., Terasaki, O., & Yu, J. (2023). Silanol-engineered nonclassical growth of zeolite nanosheets from oriented attachment of amorphous protozeolite nanoparticles. Journal of the American Chemical Society, 145(39), 21231-21241. DOI: https://doi.org/10.1021/jacs.3c04031
Zhang, X., Gao, J., Lei, Y., Xu, Z., Xia, S., Jiang, Y., & Cheng, J. (2019a). Phosphorus removal and mechanisms by Zn-layered double hydroxide (Zn-LDHs)-modified zeolite substrates in a constructed rapid infiltration system. RSC Advances, 9(68), 39811-39823. DOI: https://doi.org/10.1039/C9RA04826J
Zhang, X., Gao, J., Zhao, S., Lei, Y., Yuan, Y., He, C., Gao, C., & Deng, L. (2019b). Hexavalent chromium removal from aqueous solution by adsorption on modified zeolites coated with Mg-layered double hydroxides. Environmental Science and Pollution Research, 26, 32928-32941. DOI: https://doi.org/10.1007/s11356-019-06410-5
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






