Remoción de sales de cobre por sodalitas recubiertas con hidróxidos doble laminares
DOI:
https://doi.org/10.24850/j-tyca-2026-01-03Palabras clave:
adsorción de aniones y cationes, HDL, XRD, SEM, RMN, zeolita, tipo sodalita, remediación del aguaResumen
Se sintetizaron zeolitas tipo sodalita a partir de silicio y aluminio posconsumo, las cuales se recubrieron con el hidróxido doble laminar (HDL) con una relación molar Mg2+ / Al3+ = 2, que se formaron por el método de coprecipitación a baja saturación. Las propiedades estructurales, morfológicas y texturales de la zeolita, el HDL y el material recubierto se determinaron mediante difracción de rayos X de muestras policristalinas (XRD), microscopía electrónica de barrido (SEM), espectroscopía de resonancia magnética nuclear 27Al (RMN) y medidas texturales. Los sólidos obtenidos se utilizaron para la eliminación de Cu2+, Cl-, NO3- y SO42- desde soluciones acuosas de Cu(NO3)2, CuCl2 y CuSO4, estudiando la capacidad de remoción por espectrometría de fluorescencia de rayos X (XFR) para Cu2+, Cl- y SO42-, y espectroscopía UV-Vis para el NO3-. Los resultados mostraron que la zeolita tipo sodalita recubierta con HDL fue capaz de hacer la captación simultánea de cationes y aniones como el Cu2+ en 9.26 mmol*g-1, Cl- en 9.34 mmol*g-1, SO42- en 8.82 mmol*g-1 y NO3- en 14.41 mmol*g-1. Estos resultados muestran que las zeolitas recubiertas con HDL se pueden usar para retener cationes y aniones dañinos para el medio ambiente, y representan una oportunidad para diseñar catalizadores
Referencias
Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloids and Surfaces B: Biointerfaces, 63(1), 116-121. DOI: https://doi.org/10.1016/j.colsurfb.2007.11.013
Bergström, P. A., Lindgren, J., & Kristiansson, O. (1991). An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution. The Journal of Physical Chemistry, 95(22), 8575-8580. DOI: https://doi.org/10.1021/j100175a031
Bernal, J. P., & Railsback, L. B. (2008). Introducción a la tabla periódica de los elementos y sus iones para ciencias de la tierra. Revista Mexicana de Ciencias Geológicas, 25(2), 236-246.
Bezerra, B. G. P., Bieseki, L., Da Silva, D. R., & Pergher, S. B. C. (2019). Development of a zeolite A/LDH composite for simultaneous cation and anion removal. Materials, 12(4), 661. DOI: https://doi.org/10.3390/ma12040661
Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., Masini, C. M., & Mattii, G. B. (2021). Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8), 1547. DOI: https://doi.org/10.3390/agronomy11081547
Chung, J., Lee, J., Kim, J. K., Kim, M., Lee, K. S., Kim, S. J., Lee, M. H., & Yu, T. (2020). An analytical method to characterize the crystal structure of layered double hydroxides: Synthesis, characterization, and electrochemical studies of zinc-based LDH nanoplates. Journal of Materials Chemistry A, 8(17), 8692-8699. DOI: https://doi.org/10.1039/D0TA01774D
Contini, A., Jendrlin, M., Al-Ani, A., & Zholobenko, V. (2024). Structural and acidic properties of ion-exchanged mazzite. Petroleum Chemistry, 64(3), 1-10. DOI: https://doi.org/10.1134/S0965544123110099
Datt, A., Burns, E. A., Dhuna, N. A., & Larsen, S. C. (2013). Loading and release of 5-fluorouracil from HY zeolites with varying SiO₂/Al₂O₃ ratios. Microporous and Mesoporous Materials, 167, 182-187. DOI: https://doi.org/10.1016/j.micromeso.2012.09.011
Derkowski, A., Franus, W., Beran, E., & Czímerová, A. (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166(1), 47-54. DOI: https://doi.org/10.1016/j.powtec.2006.05.004
Di Bitetto, A., André, E., Carteret, C., Durand, P., & Kervern, G. (2017). Probing the dynamics of layered double hydroxides by solid-state ²⁷Al NMR spectroscopy. The Journal of Physical Chemistry C, 121(13), 7276-7281. DOI: https://doi.org/10.1021/acs.jpcc.6b13106
Forano, C., Hibino, T., Leroux, F., & Taviot-Guého, C. (2006). Layered double hydroxides. Developments in Clay Science, 1, 1021-1095. DOI: https://doi.org/10.1016/S1572-4352(05)01039-1
García-Sosa, I., Cabral-Prieto, A., Nava, N., Navarrete, J., Olguín, M. T., Escobar, L., López-Castañares, R., & Olea-Cardoso, O. (2015). Sorption of chromium (VI) by Mg/Fe hydrotalcite-type compounds. Hyperfine Interactions, 232, 67-75. DOI: https://doi.org/10.1007/s10751-014-1117-5
Guilherme, V. A., Cunha, V. R., De Paula, E., De Araujo, D. R., & Constantino, V. R. (2022). Anti-inflammatory and analgesic evaluation of a phytochemical intercalated into layered double hydroxide. Pharmaceutics, 14(5), 934. DOI: https://doi.org/10.3390/pharmaceutics14050934
Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S. J., & Kim, Y. (2004). Synthesis, structure and heterogeneous catalytic activities of Cu-containing polymeric compounds: Anion effect and comparison of homogeneous vs. heterogeneous catalytic activity. Dalton Transactions, 17, 2697-2701. DOI: https://doi.org/10.1039/B406877G
Jagessar, R. C., & Sooknundun, L. (2011). Determination of nitrate anion in waste water from nine selected areas of coastal Guyana via a spectrophotometric method. International Journal of Research and Reviews in Applied Sciences, 7(2), 203-212.
Ji, Y., Zhang, X., Gao, J., Zhao, S., Dou, Y., Xue, Y., & Chen, L. (2020). Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides. Ecotoxicology and Environmental Safety, 188, 109887. DOI: https://doi.org/10.1016/j.ecoenv.2019.109887
Kumari, S., Sharma, V., Soni, S., Sharma, A., Thakur, A., Kumar, S., Dhama, K., Sharma, A. K., & Bhatia, S. K. (2023). Layered double hydroxides and their tailored hybrids/composites: Progressive trends for delivery of natural/synthetic-drug/cosmetic biomolecules. Environmental Research, 231, 117171. DOI: https://doi.org/10.1016/j.envres.2023.117171
Lee, H., Wu, X., & Sun, L. (2020). Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation. Nanoscale, 12(7), 4187-4218. DOI: https://doi.org/10.1039/C9NR10437B
Li, H., Li, S., Guan, R., Jin, Z., Xiao, D., Guo, Y., & Li, P. (2024). Modulating the surface concentration and lifetime of active hydrogen in Cu-based layered double hydroxides for electrocatalytic nitrate reduction to ammonia. ACS Catalysis, 14(16), 12042-12050. DOI: https://doi.org/10.1021/acscatal.4c03245
Liu, S., Lian, X., Yue, B., Xu, S., Wu, G., Chai, Y., Zhang, Y., & Li, L. (2024). Control of zeolite local polarity toward efficient xenon/krypton separation. Journal of the American Chemical Society, 146(12), 8335-8342. DOI: https://doi.org/10.1021/jacs.3c13994
López, J. A., Toro, R. A., Romero-Bohórquez, A. R., Quintana, J. H., & Henao, J. A. (2020). Synthesis of zeolites P and evaluation of their activity as new and reusable heterogeneous catalysts in a three-component ABB’Povarov model reaction. Universitas Scientiarum, 25(3), 385-407. DOI: https://doi.org/10.11144/Javeriana.SC25-3.sozp
Lucena, S. M., De Oliveira, J. C. A., Vasconcelos-Gonçalves, D. V., Lucas, L. M., Moura, P. A., Gomes-Santiago, R. G., Azevedo, D., & Bastos-Neto, M. (2022). LTA zeolite characterization based on pore type distribution. Industrial & Engineering Chemistry Research, 61(5), 2268-2279. DOI: https://doi.org/10.1021/acs.iecr.1c04897
Panfili, I., Bartucca, M. L., Ballerini, E., & Del Buono, D. (2017). Combination of aquatic species and safeners improves the remediation of copper polluted water. Science of the Total Environment, 601, 1263-1270. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.003
Pehlivan, E., & Altun, T. (2006). The study of various parameters affecting the ion exchange of Cu²⁺, Zn²⁺, Ni²⁺, Cd²⁺, and Pb²⁺ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous Materials, 134(1-3), 149-156. DOI: https://doi.org/10.1016/j.jhazmat.2005.10.052
Quintana, J. H., Aparicio, A. P., Parra, L. K., Henao, J. A., & Ríos, C. A. (2014). Estudio de parámetros de síntesis de las estructuras zeolíticas Linde Tipo A (LTA) y Faujasita (FAU) X a partir de aluminio post-consumo y diatomita, para la remoción de metales pesados. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(148), 167-180. DOI: https://doi.org/10.18257/raccefyn.162
Salgado-Gómez, N., Macedo-Miranda, M. G., & Olguín, M. T. (2014). Chromium VI adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff. Applied Clay Science, 95, 197-204. DOI: https://doi.org/10.1016/j.clay.2014.04.013
Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., & Mierzwa-Hersztek, M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, 311, 127461. DOI: https://doi.org/10.1016/j.jclepro.2021.127461
Teixeira, S. C. G., Mathias, L., & Canela, M. C. (2003). Recuperação de sílica-gel utilizando processos oxidativos avançados: Uma alternativa simples e de baixo custo. Química Nova, 26(6), 931-933. DOI: https://doi.org/10.1590/S0100-40422003000600025
Theiss, F. L., Couperthwaite, S. J., Ayoko, G. A., & Frost, R. L. (2014). A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. Journal of Colloid and Interface Science, 417, 356-368. DOI: https://doi.org/10.1016/j.jcis.2013.11.040
Tian, K., Tan, D., Fu, X., Zhang, Y., Yao, D., Zhong, M., Chen, R., Dong, Y., & Liu, Y. (2025). Adsorption performance of 1,4-dioxane by MCM-22 and Beta zeolites and their bio-zeolite composite system in the presence of co-contaminants. Separation and Purification Technology, 354, 128752. DOI: https://doi.org/10.1016/j.seppur.2024.128752
Vicente-Martínez, Y., Caravaca-Garratón, M., García-Onsurbe, M. D. C., & Soto-Meca, A. (2021). Silver nanoparticles functionalized with sodium mercaptoethane sulfonate to remove copper from water by the formation of a micellar phase. Separations, 8(8), 108. DOI: https://doi.org/10.3390/separations8080108
Wang, W., Zhou, J., Achari, G., Yu, J., & Cai, W. (2014). Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 33-40. DOI: https://doi.org/10.1016/j.colsurfa.2014.05.034
Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. DOI: https://doi.org/10.1016/S0167-2738(00)00632-9
Xie, Z. H., Zhou, H. Y., He, C. S., Pan, Z. C., Yao, G., & Lai, B. (2021). Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chemical Engineering Journal, 414, 128713. DOI: https://doi.org/10.1016/j.cej.2021.128713
Yamada, H., Watanabe, Y., Hashimoto, T., Tamura, K., Ikoma, T., Yokoyama, S., Tanaka, J., & Moriyoshi, Y. (2006). Synthesis and characterization of Linde A zeolite coated with a layered double hydroxide. Journal of the European Ceramic Society, 26(4-5), 463-467. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.07.018
Yang, Z. Z., Zhang, C., Zeng, G. M., Tan, X. F., Huang, D. L., Zhou, J. W., Fang, Q.-Z., Yang, K.-H., Wang H., Wei, J., & Nie, K. (2021). State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H₂/O₂ production. Coordination Chemistry Reviews, 446, 214103. DOI: https://doi.org/10.1016/j.ccr.2021.214103
Yuan, E. H., Han, R., Deng, J. Y., Zhou, W., & Zhou, A. (2024). Acceleration of zeolite crystallization: Current status, mechanisms, and perspectives. ACS Applied Materials & Interfaces, 16(23), 29521-29546. DOI: https://doi.org/10.1021/acsami.4c01774
Yuan, Y., Zhang, X., Lei, Y., Jiang, Y., Xu, Z., Zhang, S., Gao, J., & Zhao, S. (2018). Nitrogen removal by modified zeolites coated with Zn-layered double hydroxides (Zn-LDHs) prepared at different molar ratios. Journal of the Taiwan Institute of Chemical Engineers, 87, 73-82. DOI: https://doi.org/10.1016/j.jtice.2018.03.010
Yue, X., Liu, W., Chen, Z., & Lin, Z. (2017). Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight. Journal of Environmental Sciences, 53, 16-26. DOI: https://doi.org/10.1016/j.jes.2016.01.015
Zhang, Q., Li, J., Wang, X., He, G., Li, L., Xu, J., Mei, D., Terasaki, O., & Yu, J. (2023). Silanol-engineered nonclassical growth of zeolite nanosheets from oriented attachment of amorphous protozeolite nanoparticles. Journal of the American Chemical Society, 145(39), 21231-21241. DOI: https://doi.org/10.1021/jacs.3c04031
Zhang, X., Gao, J., Lei, Y., Xu, Z., Xia, S., Jiang, Y., & Cheng, J. (2019a). Phosphorus removal and mechanisms by Zn-layered double hydroxide (Zn-LDHs)-modified zeolite substrates in a constructed rapid infiltration system. RSC Advances, 9(68), 39811-39823. DOI: https://doi.org/10.1039/C9RA04826J
Zhang, X., Gao, J., Zhao, S., Lei, Y., Yuan, Y., He, C., Gao, C., & Deng, L. (2019b). Hexavalent chromium removal from aqueous solution by adsorption on modified zeolites coated with Mg-layered double hydroxides. Environmental Science and Pollution Research, 26, 32928-32941. DOI: https://doi.org/10.1007/s11356-019-06410-5
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial






