Evaluation of the acute toxicity of IHPLUS® on the biomodel water quality indicator: Poecilia reticulata

Authors

DOI:

https://doi.org/10.24850/j-tyca-2024-06-09

Keywords:

Bioproducts, ecotoxicology, efficient microorganisms, guppy fish

Abstract

Conventional agriculture depends on the application of fertilizers in order to achieve higher yields; however, it is necessary to strike a balance between their benefits and the alterations they may cause to ecosystems. International organizations regulate their use and commercialization taking into account their efficacy and safety. IHPLUS®, produced by the Experimental Station of Pastures and Forages "Indio Hatuey" (Cuba), has shown to be effective in different crops and the purpose of this study is to evaluate the effects on water quality in the bioindicator Poecilia reticulata. The fish were exposed to the product, in a static regime for 96 h, at the concentration effective in agriculture (6 %) or diluted to 106 CFU/mL as recommended by EPA OPPTS 885.4000. A group treated with the 6 % product but sterilized and a control group that received no treatment were also included. They were observed for 30 days post-inoculation and weight, mortality and other sublethal effects were assessed. Subsequently, the mean lethal concentration (LC50) and the influence of pH on fish mortality were determined. It was found that at 6 % it caused adverse clinical events and lethal effect in the biomodel. The histopathological lesions corresponded for both the activated and inactivated products. The LC50 was 3.19 %, the toxicity being associated to the acid pH and not to the microbial load present in the bioproduct. It is concluded that IHPLUS® is safe for Poecilia reticulata at concentrations below 3 %.

References

Abdallah, J. S., Thomas, B. S., & Jonz, G. M. (2015). Aquatic surface respiration and swimming behavior in adult and developing zebrafish exposed to hypoxia. Journal of Experimental Biology, 218, 1777-1786.

EPA, Environmental Protection Agency. (2009a). Microbial pesticide test guidelines: OPPTS 885.2000 background for residue analysis of microbial pest control agents (EPA 712–C–96–328). Recuperado de https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0159-0028

EPA, Environmental Protection Agency. (2009b). Microbial pesticide test guidelines: OPPTS 885.4000 background for nontarget organism testing of microbial pest control agents (EPA 712–C–96–328). Recuperado de https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0159-0028

EPA, Environmental Protection Agency. (2016). Fish acute toxicity test, freshwater and marine. United States Environmental Protection Agency. Prevention, Pesticides and Toxic Substances (7101) (EPA OPPTTS. 850.1075). Recuperado de https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0154-0035

Díaz-Solares, M., Martín-Martín, G., Taymer, F., Fonte, L., Lamela-López, L., Montejo-Sierra, I., Esquijerosa, Y., Ojeda-García, F., Medina-Salas, R., Ramírez, W., Lezcano-Fleires, J., Pentón, G., Peter-Schmith, H., Alonso-Amaro, O., Catalá-Barranco, R., & Milera-Rodríguez, M. (2020). Obtención y utilización de microorganismos nativos: el bioproducto IHPLUS®. Proyecto Biocarbono. Cuba. Recuperado de https://www.researchgate.net/publication/339916260

FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2019). Código Internacional de Conducta para el Uso y Manejo de Fertilizantes. Roma, Italia: Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Henrique, L., Araújo, V., John, D., & Rantin, T. (2018). Control of air-breathing in fishes: Central and peripheral receptors. Acta Histochemica, 120(7), 642-653.

Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 16, 31-87.

Megías, M., Molist, P., & Pombal, M. (2018). Técnicas histológicas. TINCIÓN. Atlas de Histología Vegetal y Animal. Vigo, España: Departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo.

Naciones Unidas. (2015). Sistema globalmente armonizado de clasificación y etiquetado de productos químicos (SGA) (6ª ed.). Nueva York, EUA, y Ginebra, Suiza: Naciones Unidas.

Ng, J. F., Ahmed, O. H., Jalloh, M. B., Omar, L., Kwan, Y. M., Musah, A. A., 6 Poong, K. H. (2022). Soil nutrient retention and pH buffering capacity are enhanced by calciprill and sodium silicate. Agronomy, 12, 219. DOI: 10.3390/agronomy12010219

OECD, Organización para la Cooperación y el Desarrollo Económicos. (2019). Test No. 203: Fish, acute toxicity test, OECD guidelines for the testing of chemicals, Section 2. DOI: 10.1787/9789264069961-en

Palacios, H. S., Sandoval, C. N., Bueno, M. C., & Manchego, S. A. (2015). Estudio microbiológico e histopatológico en peces tetra neón (Paracheirodon innesi) de la amazonía peruana. Revista de Investigaciones Veterinarias del Perú, 26(3), 469-483.

Pardo, C. S., Suárez, M. H., & Pertuz, B. V. (2009). Interacción de los suelos sulfatados ácidos con el agua y sus efectos en la sobrevivencia del bocachico (Prochilodus magdalenae) en cultivo. Revista Colombiana de Ciencias Pecuarias, 22(4), 619-631.

Ramírez, P., & Mendoza, A. (2008). Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo. México, DF, México: Secretaría de Medio Ambiente y Recursos Naturales.

Riaz, U., Murtaza, G., Anum, W., Samreen, T., Sarfraz, M., & Nazir, M. Z. (2021). Chapter 11. Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. In: Hakeem, K. R. et al. (eds.). Microbiota and biofertilizers. DOI: 10.1007/978-3-030-48771-3_11

Santillán, M. L. (2016). Así funcionan los biofertilizantes. Ciencia UNAM. Ciudad de México, México: Universidad Nacional Autónoma de México (UNAM). Dirección General de Divulgación de la Ciencia (DGDC). Recuperado de https://ciencia.unam.mx/leer/570/Asi_funcionan_los_biofertilizantes

Santos, D., Luzio, A., Coimbra, A., Varandas, S., Fontaínhas-Fernandes, A., & Monteiro, S. (2019). A gill histopathology study in two native fish species from the hydrographic Douro Basin. Microscopy and Microanalysis, 25(1), 1-8. DOI: 10.1017/S1431927618015490

Serrano, R. (2003). Introducción al análisis de datos experimentales: tratamiento de datos en bioensayos (pp. 145-160). Castelló de la Plana, España: Universitat Jaume I.

Sudha, V., & Baskar, K. (2017). Importance of aquatic toxicology. Entomology, Ornithology & Herpetology: Current Research, 6(2), e126.

Urku, C. (2020). Histopathology and antibiotic susceptibility of Aeromonas hydrophila isolated from diseased guppy (Poecilia reticulata). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Recuperado de https://www.researchgate.net/publication/340063729

Published

2024-11-01

How to Cite

Castañedo-Hernández, Z. A., Meneses-Marcel, A., Marrero-Chang, O., Sotolongo-González, K., Artiles-Martínez, D., & González Sierra, L. (2024). Evaluation of the acute toxicity of IHPLUS® on the biomodel water quality indicator: Poecilia reticulata. Tecnología Y Ciencias Del Agua, 15(6), 396–422. https://doi.org/10.24850/j-tyca-2024-06-09