Methodologies and studies on counterflow wet cooling towers: strategies for reducing water losses through evaporation and drift

Authors

DOI:

https://doi.org/10.24850/j-tyca-2025-06-06

Keywords:

Counter flow cooling tower, water droplets, evaporation, drag

Abstract

This paper presents a comparison of studies carried out on counterflow cooling towers to synthesize contributions, studies and methodologies that provide a recent context for the current state of research in this field. This work starts from the basic fundamentals of cooling towers, their study sections and problems to be solved, with a focus on water consumption in evaporative processes by heat transfer in water droplets to calculate water losses by evaporation and drag. The fundamentals of cooling towers and general applications are reviewed and discussed, as well as the common research methods used in cooling towers, emphasizing the particular characteristics according to the type of study; whether from the point of view of cooling tower design, the characteristics that affect its operation or performance, the fundamentals of energy analysis, suggestions for carrying out numerical studies and CFD simulations, in addition to their corresponding validation through experimental studies. The information gathered in this paper provides an overview and simplifies the essential advances in reducing evaporation and drag losses in counterflow cooling towers, the characteristics and trends in the development of computational mathematical models, and recommendations for carrying out theoretical and experimental studies for better understanding of heat and mass transfer mechanisms.

References

Al-Waked, R., & Behnia, M. (2006). CFD simulation of wet cooling towers. Applied Thermal Engineering, 26(4), 382-395. DOI: 10.1016/j.applthermaleng.2005.06.018

Araneo, L. T. (2012). Droplet separators for evaporative towers: Efficiency estimation by PDA. In: ICLASS 2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems (pp. 1-8). Heidelberg, Germany.

Asvapoositkul, W., & Treeutok, S. (2012). A simplified method on thermal performance capacity evaluation of counter flow cooling tower. Applied Thermal Engineering, 38, 160-167. DOI: 10.1016/j.applthermaleng.2012.01.025

Baker, D. R., & Shryock, H. A. (1961). A comprehensive approach to the analysis of cooling tower performance. ASME Journal of Heat Transfer, 83(3), 339-349. DOI: 10.1115/1.3682276

Bauer, D., Philbrick, M., Vallario, B., Battey, H., Clement, Z., & Fields, F. (2014). The water-energy nexus: Challenges and opportunities. Washington, DC, USA: US Department of Energy. Recuperado de https://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_153127.pdf

Bijl, D. L., Bogaart, P. W., Kram, T., Vries, B. J. M., & De Vuuren, D. P. van. (2016). Long-term water demand for electricity, industry and households. Environmental Science and Policy, 55, 75-86. DOI: 10.1016/j.envsci.2015.09.005

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Fenómenos de transporte (2ª ed.). Ciudad de México, México: Limusa Wiley.

Blain, N., Belaud, A., & Miolane, M. (2016). Development and validation of a CFD model for numerical simulation of a large natural draft wet cooling tower. Applied Thermal Engineering, 105, 953-960. DOI: 10.1016/j.applthermaleng.2016.03.020

Bolot, R., Li, J., & Coddet, C. (2004). Modeling of thermal plasma jets: A comparison between Phoenics and Fluent. In: Proceedings of the International Thermal Spray Conference (pp. 764-769). Osaka, Japan. DOI: 10.31399/asm.cp.itsc2004p0764

Borodulin, V., Letushko, V., Nizovtsev, M., & Sterlyagov, A. (2016). The surface temperature of free evaporating drops The surface temperature of free evaporating drops. Journal of Physics: Conference Series, 754(3). DOI: 10.1088/1742-6596/754/3/032018

Cerqueira, R. F. L., Paladino, E. E., & Maliska, C. R. (2015). A computational study of the interfacial heat or mass transfer in spherical and deformed fluid particles flowing at moderate Re numbers. Chemical Engineering Science, 138, 741-759. DOI: 10.1016/j.ces.2015.08.054

Chen, X., Sun, F., & Lyu, D. (2019). Field test study on water droplet diameter distribution in the rain zone of a natural draft wet cooling tower. Applied Thermal Engineering, 162, 114252. DOI: 10.1016/j.applthermaleng.2019.114252

Chin, K. S., Rosli, A. A., Wee, C. S. L., & Ngeow, Y. F. (2005). Isolation of Legionella from cooling towers non-medical buildings in a university campus. Journal of Health and Translational Medicine (JUMMEC), 8(1), 23-27. DOI: 10.22452/jummec.vol8no1.5

Chini, S. F., & Amirfazli, A. (2013). Understanding the evaporation of spherical drops in quiescent environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 82-88. DOI: 10.1016/j.colsurfa.2013.05.013

Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. Cambridge, USA: Academic Press.

Collin, A., Boulet, P., Parent, G., & Lacroix, D. (2007). Numerical simulation of a water spray-radiation attenuation related to spray dynamics. International Journal of Thermal Sciences, 46(9), 856-868. DOI: 10.1016/j.ijthermalsci.2006.11.005

Cui, H., Li, N., Peng, J., Cheng, J., & Li, S. (2016). Study on the dynamic and thermal performances of a reversibly used cooling tower with upward spraying. Energy, 96, 268-277. DOI: 10.1016/j.energy.2015.12.065

De-Villiers, E., & Kröger, D. G. (1999). Analysis of heat, mass, and momentum transfer in the rain zone of counterflow cooling towers. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 121(4), 751-755. DOI: 10.1115/1.2818537

DEQ. (2009). Water efficiency manual. Water resources. Recuperado de https://www.deq.nc.gov/watereducation/water-efficiency-business-2/download

Duguid, H. A. (1969). A study of the evaporation rates of small freely falling water droplets. Recuperado de https://scholarsmine.mst.edu/masters_theses/5295/

El-Wakil, M. M. (1985). Power plant technology. New York, St. Louis, San Francisco, USA: McGraw-Hill Book Company. Recuperado de https://lunyax.wordpress.com/wp-content/uploads/2018/03/power-plant-technology-by-m-m-el-wakil.pdf

Fisenko, S. P., Petruchik, A. I., & Solodukhin, A. D. (2002). Evaporative cooling of water in a natural draft cooling tower. International Journal of Heat and Mass Transfer, 45(23), 4683-4694. DOI: 10.1016/S0017-9310(02)00158-8

Fluent ANSYS. (2013). ANSYS fluent theory guide. Canonsburg, USA: ANSYS Inc.

Fluent ANSYS. (2017). ANSYS fluent tutorial guide. Canonsburg, USA: ANSYS Inc.

Gharagheizi, F., Hayati, R., & Fatemi, S. (2007). Experimental study on the performance of mechanical cooling tower with two types of film packing. Energy Conversion and Management, 48(1), 277-280. DOI: 10.1016/j.enconman.2006.04.002

Gilani, N., & Parpanji, F. (2018). Parametric study on the outlet water temperature in a shower cooling tower and its application in different Iranian provincial capitals. International Journal of Thermal Sciences, 124, 174-186. DOI: 10.1016/j.ijthermalsci.2017.10.017

Givoni, B. (February-March, 1997). Performance of the shower cooling tower in different climates. Renewable Energy, 10(2-3), 173-178. DOI: 10.1016/0960-1481(96)00059-6

Gjorgiev, B., & Sansavini, G. (2018). Electrical power generation under policy constrained water-energy nexus. Applied Energy, 210, 568-579. DOI: 10.1016/j.apenergy.2017.09.011

González-Pedraza, O. J. (2017). Desarrollo de una metodología para el mejoramiento del diseño del aspersor de una torre de enfriamiento de tiro forzado a contra flujo (tesis doctoral). Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

González-Pedraza, O. J., Pacheco-Ibarra, J. J., & Rubio-Maya, C. (2015). Conceptual design and numerical modeling of prototype counterflow cooling tower with forced draft for geothermal. ASME International Mechanical Engineering Congress and Exposition, 57496, 1-8. DOI: 10.1115/IMECE2015-50634

González-Pedraza, O. J., Pacheco-Ibarra, J. J., Rubio-Maya, C., Galván-González, S. R., & Rangel-Arista, J. A. (2018). Numerical study of the drift and evaporation of water droplets cooled down by a forced stream of air. Applied Thermal Engineering, 142, 292-302. DOI: 10.1016/j.applthermaleng.2018.07.011

Goshayshi, H. R., & Missenden, J. F. (2000). Investigation of cooling tower packing in various arrangements. Applied Thermal Engineering, 20(1), 69-80. DOI: 10.1016/S1359-4311(99)00011-3

Guella, S., Alexandrova, S., & Saboni, A. (2008). Evaporation d'une gouttelette en chute libre dans l'air. International Journal of Thermal Sciences, 47(7), 886-898. DOI: 10.1016/j.ijthermalsci.2007.07.020

Guerras, L. S., & Martín, M. (2020). On the water footprint in power production: Sustainable design of wet cooling towers. Applied Energy, 263, 114620. DOI: 10.1016/j.apenergy.2020.114620

Heidarinejad, G., Karami, M., & Delfani, S. (2009). Numerical simulation of counter-flow wet-cooling towers. International Journal of Refrigeration, 32(5), 996-1002. DOI: 10.1016/j.ijrefrig.2008.10.008

Hensely, J. C. (2011). Cooling tower fundamentals. Recuperado de https://www.academia.edu/download/48373575/Cooling-Tower-Fundamentals.pdf

Ivchenko, I. N. (1979). Evaporation of spherical drops under conditions of thermostatic control of their surface. Fluid Dyn, 14, 790-792. DOI: 10.1007/BF01409829

Ivchenko, I. N. (1984). The evaporation and growth of spherical droplets at intermediate Knudsen numbers. Fluid Dynamics, 19(2), 335-337. DOI: 10.1007/BF01091264

Ivchenko, N., & Muradyan, S. M. (1982). Evaporation of spherical drops in a binary gas mixture at arbitrary Knudsen numbers. Fluid Dynamics, 19, 92-97. DOI: 10.1007/BF01090705

Jaber, H., & Webb, R. L. (1989). Design of cooling towers by the effectiveness-NTU method. Journal of Heat Transfer, 111(4), 837. DOI: 10.1115/1.3250794

Jiang, J. J., Liu, X. H., & Jiang, Y. (2013). Experimental and numerical analysis of a cross-flow closed wet cooling tower. Applied Thermal Engineering, 61(2), 678-689. DOI: 10.1016/j.applthermaleng.2013.08.043

Kachhwaha, S. S., Dhar, P. L., & Kales, S. R. (1998). Experimental studies and numerical simulation of evaporative cooling of air with a water spray-I. Horizontal parallel flow. International Journal of Heat and Mass Transfer, 41(2), 447-464. DOI: 10.1016/S0017-9310(97)00133-6

Khamis M. M., & Hassab, M. A. (2014). Innovative correlation for calculating thermal performance of counterflow wet-cooling tower. Energy, 74(C), 855-862. DOI: 10.1016/j.energy.2014.07.059

Klimanek, A., & Białecki, R. A. (2009). Solution of heat and mass transfer in counterflow wet-cooling tower fills. International Communications in Heat and Mass Transfer, 36(6), 547-553. DOI: 10.1016/j.icheatmasstransfer.2009.03.007

Klimanek, A., Cedzich, M., & Bialecki, R. (2015). 3D CFD modeling of natural draft wet-cooling tower with flue gas injection. Applied Thermal Engineering, 91, 824-833. DOI: 10.1016/j.applthermaleng.2015.08.095

Kloppers, J. C. (2003). A critical evaluation and refinement of the performance prediction of wet-cooling towers (doctoral dissertation). University of Stellenbosch, Stellenbosch, South Africa. Recuperado de https://scholar.sun.ac.za/items/49b7c7b4-763c-487a-8ce3-494521816dca

Kloppers, J. C., & Kröger, D. G. (2005). The Lewis factor and its influence on the performance prediction of wet-cooling towers. International Journal of Thermal Sciences, 44(9), 879-884. DOI: 10.1016/j.ijthermalsci.2005.03.006

Kumar, M., & Chandra, K. (2015). Evaporating falling drop. Procedia IUTAM, 15, 201-206. DOI: 10.1016/j.piutam.2015.04.028

Lemouari, M., Boumaza, M., & Kaabi, A. (2011). Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower. Energy, 36(10), 5815-5823. DOI: 10.1016/j.energy.2011.08.045

Li, H. W., Duan, W. B., Wang, S. B., Zhang, X. L., Sun, B., & Hong, W. P. (2018). Numerical simulation study on different spray rates of three-area water distribution in wet cooling tower of fossil-fuel power station. Applied Thermal Engineering, 130, 1558-1567. DOI: 10.1016/j.applthermaleng.2017.11.107

Li, M., Dai, H., Xie, Y., Tao, Y., Bregnbaek, L., & Sandholt, K. (2017). Water conservation from power generation in China: A provincial level scenario towards 2030. Applied Energy, 208, 580-591. DOI: 10.1016/j.apenergy.2017.09.096

Li, X., Gurgenci, H., Guan, Z., Wang, X., & Xia, L. (2019). A review of the crosswind effect on the natural draft cooling towers. Applied Thermal Engineering, 150, 250-270. DOI: 10.1016/j.applthermaleng.2018.12.147

Li, X., Feng, K., Siu, Y. L., & Hubacek, K. (2012). Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption. Energy Policy, 45, 440-448. DOI: 10.1016/j.enpol.2012.02.054

Liang, G., & Mudawar, I. (2017). Review of spray cooling. Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. International Journal of Heat and Mass Transfer, 115, 1174-1205. DOI: 10.1016/j.ijheatmasstransfer.2017.06.029

Llano-Restrepo, M., & Monsalve-Reyes, R. (2017). Modélisation et simulation de tours de refroidissement humide à contre-courant et calcul et corrélation précis des coefficients de transfert de masse pour la prévision de la performance thermique. International Journal of Refrigeration, 74, 45-70. DOI: 10.1016/j.ijrefrig.2016.10.018

Lopes, R. J., & Quinta-Ferreira, R. M. (2010). Evaluation of multiphase CFD models in gas–liquid packed-bed reactors for water pollution abatement. Chemical Engineering Science, 65(1), 291-297. DOI: 10.1016/j.ces.2009.06.039

Lorenzini, G., & Saro, O. (2013). Thermal fluid dynamic modelling of a water droplet evaporating in air. International Journal of Heat and Mass Transfer, 62(1), 323-335. DOI: 10.1016/j.ijheatmasstransfer.2013.02.062

Lu, Y., & Chen, B. (2016). Energy-water nexus in urban industrial system. Energy Procedia, 88, 212-217. DOI: 10.1016/j.egypro.2016.06.150

Lucas, M., Martínez, P. J., Ruiz, J., Kaiser, A. S., & Viedma, A. (2010). On the influence of psychrometric ambient conditions on cooling tower drift deposition. International Journal of Heat and Mass Transfer, 53(4), 594-604. DOI: 10.1016/j.ijheatmasstransfer.2009.10.037

Lucas, M., Martínez, P. J., & Viedma, A. (2009). Experimental study on the thermal performance of a mechanical cooling tower with different drift eliminators. Energy Conversion and Management, 50(3), 490-497.DOI: 10.1016/j.enconman.2008.11.008

Lucas, M., Martínez, P. J., & Viedma, A. (2012). Experimental determination of drift loss from a cooling tower with different drift eliminators using the chemical balance method. International Journal of Refrigeration, 35(6), 1779-1788. DOI: 10.1016/j.ijrefrig.2012.04.005

Merkel, F. (1925). Verdunstungsku. VDI-Zeitchrift, 70, 123-128.

Meroney, R. N. (2006). CFD prediction of cooling tower drift. Journal of Wind Engineering and Industrial Aerodynamics, 94(6), 463-490. DOI: 10.1016/j.jweia.2006.01.015

Miura, K., Miura, T., & Ohtani, S. (1977). Heat and mass transfer to and from droplets (Spray drying). AIChE Symposium Series, 73(163), 95-102. Recuperado de https://agris.fao.org/search/en/providers/123819/records/6473595f08fd68d54601c2d7

Montazeri, H., Blocken, B., & Hensen, J. L. M. (2015). Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Building and Environment, 83, 129-141. DOI: 10.1016/j.buildenv.2014.03.022

Muangnoi, T., Asvapoositkul, W., & Hungspreugs, P. (2014). Performance characteristics of a downward spray water-jet cooling tower. Applied Thermal Engineering, 69(1-2), 165-176. DOI: 10.1016/j.applthermaleng.2014.04.019

Murrant, D., Quinn, A., Chapman, L., & Heaton, C. (2017). Water use of the UK thermal electricity generation fleet by 2050: Part 1 identifying the problem. Energy Policy, 108, 844-858. DOI: 10.1016/j.enpol.2017.05.011

Nahavandi, A. N., & Serico, B. J. (1975). The effect of evaporation losses in the analysis of crossflow cooling towers. Nuclear Engineering and Design, 35(2), 269-282. DOI: 10.1016/0029-5493(75)90201-0

Naik, B. K., & Muthukumar, P. (2017). A novel approach for performance assessment of mechanical draft wet cooling towers. Applied Thermal Engineering, 121, 14-26. DOI: 10.1016/j.applthermaleng.2017.04.042

Naphon, P. (2005). Study on the heat transfer characteristics of an evaporative cooling tower. International Communications in Heat and Mass Transfer, 32(8), 1066-1074. DOI: 10.1016/j.icheatmasstransfer.2005.05.016

Nasrabadi, M., & Finn, D. P. (2014). Mathematical modeling of a low temperature low approach direct cooling tower for the provision of high temperature chilled water for conditioning of building spaces. Applied Thermal Engineering, 64(1-2), 273-282. DOI: 10.1016/j.applthermaleng.2013.12.025

Nuyttens, D., Baetens, K., De Schampheleire, M., & Sonck, B. (2007). Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering, 97(3), 333-345. DOI: 10.1016/j.biosystemseng.2007.03.001

Papaefthimiou, V. D., Rogdakis, E. D., Koronaki, I. P., & Zannis, T. C. (2012). Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower. Applied Thermal Engineering, 33, 199-207. DOI: 10.1016/j.applthermaleng.2011.09.035

Pearlmutter, D., Erell, E., Etzion, Y., Meir, I. A., & Di, H. (1996). Refining the use of evaporation in an experimental down-draft cool tower. Energy and Buildings, 23(3), 191-197. DOI: 10.1016/0378-7788(95)00944-2

Picardo, J. R., & Variyar, J. E. (2012). The Merkel equation revisited: A novel method to compute the packed height of a cooling tower. Energy Conversion and Management, 57, 167-172. DOI: 10.1016/j.enconman.2011.12.016

Qi, X., Liu, Z., & Li, D. (2007). Performance characteristics of a shower cooling tower. Energy Conversion and Management, 48(1), 193-203. DOI: 10.1016/j.enconman.2006.04.021

Qi, X., Liu, Z., & Li, D. (2008). Prediction of the performance of a shower cooling tower based on projection pursuit regression. Applied Thermal Engineering, 28(8-9), 1031-1038. DOI 10.1016/j.applthermaleng.2007.06.029

Qureshi, B. A., & Zubair, S. M. (2006). A complete model of wet cooling towers with fouling in fills. Applied Thermal Engineering, 26(16), 1982-1989. DOI: 10.1016/j.applthermaleng.2006.01.010

Ramkrishnan, R., & Arumugam, R. (2013). Experimental study of cooling tower performance using ceramic tile packing. Processing and Application of Ceramics, 7(1), 21-27. DOI: 10.2298/pac1301021r

Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Chemical Engineering Progress, 48, 141-146. Recuperado de https://dns2.asia.edu.tw/~ysho/YSHO-English/2000%20CE/PDF/Che%20Eng%20Pro48,%20141.pdf

Rezaei, E., Shafiei, S., & Abdollahnezhad, A. (2010). Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower. Energy Conversion and Management, 51(2), 311-319. 10.1016/j.enconman.2009.09.027

Rotar, M., Širok, B., Drobnič, B., Novak, M., & Donevski, B. (2005). A numerical analysis of the local anomalies in a natural-draft cooling tower. Heat Transfer Engineering, 26(9), 61-72. DOI: 10.1080/01457630500207592

Ruiz, J., Cutillas, C. G., Kaiser, A. S., Ballesta, M., Zamora, B., & Lucas, M. (2016). Experimental study of drift deposition from mechanical draft cooling towers in urban environments. Energy and Buildings, 125, 181-195. DOI: 10.1016/j.enbuild.2016.04.076

Ruiz, J., Cutillas, C. G., Kaiser, A. S., Zamora, B., Sadafi, H., & Lucas, M. (2019). Experimental study on pressure loss and collection efficiency of drift eliminators. Applied Thermal Engineering, 149, 94-104. DOI: 10.1016/j.applthermaleng.2018.12.023

Ruiz, J., Kaiser, A. S., & Lucas, M. (2017). Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions. Environmental Pollution, 230, 422-431. DOI: 10.1016/j.envpol.2017.06.073

Sánchez, F., Kaiser, A. S., Zamora, B., Ruiz, J., & Lucas, M. (2015). Prediction of the lifetime of droplets emitted from mechanical cooling towers by numerical investigation. International Journal of Heat and Mass Transfer, 89, 1190-1206. DOI: 10.1016/j.ijheatmasstransfer.2015.06.014

Sartor, J. D., & Abbott, C. E. (1975). Prediction and measurement of the accelerated motion of water drops in air. Journal of Applied Meteorology and Climatology, 14(2), 232-239. DOI: 10.1175/1520-0450(1975)014<0232:PAMOTA>2.0.CO;2

Shen, W., Chen, X., Qiu, J., Hayward, J. A., Sayeef, S., Osman, P., Meng, K., & Dong, Z. Y. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133, DOI: 10.1016/j.rser.2020.110301

Shublaq, M., & Sleiti, A. K. (2020). Experimental analysis of water evaporation losses in cooling towers using filters. Applied Thermal Engineering, 175, 115418. DOI: 10.1016/j.applthermaleng.2020.115418

Sirena, J. A. (2013). Electrical-fluid dynamic performance of mechanical draft water cooling towers. Applied Thermal Engineering, 54(1), 185-189. DOI: 10.1016/j.applthermaleng.2013.02.009

Širok, B., Blagojevič, B., Novak, M., Hočevar, M., & Jere, F. (2003). Energy and mass transfer phenomena in natural draft cooling towers. Heat Transfer Engineering, 24(3), 66-75. DOI: 10.1080/01457630304061

Song, Y., Wu, G., & Song, B. (2021). Water balance test, analysis and application of the wet cooling tower. IOP Conference Series: Earth and Environmental Science, 898, 012008. DOI: 10.1088/1755-1315/898/1/012008

Srinivasan, S., Kholod, N., Chaturvedi, V., Ghosh, P. P., Mathur, R., Clarke, L., Evans, M., Hejazi, M., Kanudia, A., Nagar Koti, P., Liu, B., Parikh, K. S., Ali, M. S., & Sharma, K. (2018). Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation. Applied Energy, 210, 673–684. DOI: 10.1016/j.apenergy.2017.04.079

Stull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267-2269. DOI: 10.1175/JAMC-D-11-0143.1

Sun, Y., Guan, Z., Gurgenci, H., Li, X., & Hooman, K. (2017). A study on multi-nozzle arrangement for spray cooling system in natural draft dry cooling tower. Applied Thermal Engineering, 124, 795-814. DOI: 10.1016/j.applthermaleng.2017.05.157

Sureshkumar, R., Dhar, P. L., & Kale, S. R. (2007). Effects of spray modeling on heat and mass transfer in air-water spray systems in parallel flow. Chemical Engineering Science, 34, 878-886. DOI: 10.1016/j.icheatmasstransfer.2007.03.001

Taghian, S., & Ahmadikia, H. (2017). Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach. Applied Thermal Engineering, 125, 1002-1014. DOI: 10.1016/j.applthermaleng.2017.07.069

Terblanche, R., Reuter, H. C. R., & Kröger, D. G. (2009). Drop size distribution below different wet-cooling tower fills. Applied Thermal Engineering, 29(8-9), 1552-1560. DOI: 10.1016/j.applthermaleng.2008.07.013

Thulukkanam, K. (2013). Heat exchanger design handbook (2nd ed.). Boca Raton, USA: CRC Press. DOI: 10.1201/b14877

Tissot, J., Boulet, P., Trinquet, F., Fournaison, L., & MacChi-Tejeda, H. (2011). Air cooling by evaporating droplets in the upward flow of a condenser. International Journal of Thermal Sciences, 50(11), 2122-2131. DOI: 10.1016/j.ijthermalsci.2011.06.004

Tomás, A. C. C., Araujo, S. D. O., Paes, M. D., Primo, A. R. M., Da Costa, J. A. P., & Ochoa, A. A. V. (2018). Experimental analysis of the performance of new alternative materials for cooling tower fill. Applied Thermal Engineering, 144(August), 444-456. DOI: 10.1016/J.APPLTHERMALENG.2018.08.076

Tu, J., Yeoh, G. H., Liu, C., & Tao, Y. (2023). Computational fluid dynamics: A practical approach. Maryland Heights, USA: Elsevier.

Velandia, J. S., Chery, M., & Lopez, O. D. (2016). Computational study of the air flow dynamics in an induced draft cooling tower. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(8), 2393-2401. DOI: 10.1007/s40430-015-0348-y

Versteeg, H. K. (2007). An introduction to computational fluid dynamics the finite volume method, 2/E. Chennai, India: Pearson Education India.

Vitkovic, P. (2015). Water distribution characteristics of spray nozzles in a cooling tower. Journal of Applied Fluid Mechanics, 9(1), 1-7. DOI: 10.1051/epjconf/20159202109

Wan, Y., Ren, C., & Xing, L. (2017). An approach to the analysis of heat and mass transfer characteristics in indirect evaporative cooling with counter flow configurations. International Journal of Heat and Mass Transfer, 108, 1750-1763. DOI: 10.1016/j.ijheatmasstransfer.2017.01.019

Yang, J., Stratman, J., & Rasmussen, E. (2015). Cooling tower drift eliminator. Patent No. 002015. Recuperado de https://patents.google.com/patent/US20160356549A1/en

Yu, Z., Sun, C., Fang, J., Zhang, L., Hu, Y., & Bao, B. (2021). Water recovery efficiency improvement using the enhanced structure of the mist eliminator. Process Safety and Environmental Protection, 154, 433-446. DOI: 10.1016/j.psep.2021.08.018

Zamora, B., & Kaiser, A. S. (2011). Comparative efficiency evaluations of four types of cooling tower drift eliminator, by numerical investigation. Chemical Engineering Science, 66(6), 1232-1245. DOI: 10.1016/j.psep.2021.08.018

Zawawi, M. H., Saleha, A., Salwa, A., Hassan, N. H., Zahari, N. M., Ramli, M. Z., & Muda, Z. C. (2018, November). A review: Fundamentals of computational fluid dynamics (CFD). In: AIP Conference Proceedings, 2030(1), 1-8. DOI: 10.1063/1.5066893

Zhao, Y., Sun, F., Long, G., Huang, X., Huang, W., & Lyv, D. (2016). Comparative study on the cooling characteristics of high level water collecting natural draft wet cooling tower and the usual cooling tower. Energy Conversion and Management, 116(May), 150-164. DOI: 10.1016/j.enconman.2016.02.071

Zunaid, M., Murtaza, Q., & Gautam, S. (2017). Energy and performance analysis of multi droplets shower cooling tower at different inlet water temperatures for air cooling application. Applied Thermal Engineering, 121, 1070-1079. DOI: 10.1016/j.applthermaleng.2017.04.157

Published

2025-11-01

How to Cite

Ramírez-Ferreira, C. R., & Rubio-Maya, C. (2025). Methodologies and studies on counterflow wet cooling towers: strategies for reducing water losses through evaporation and drift. Tecnología Y Ciencias Del Agua, 16(6), 199–284. https://doi.org/10.24850/j-tyca-2025-06-06