Experimental study of uplift pressures underneath slabs with gaps running across flow

Authors

DOI:

https://doi.org/10.24850/j-tyca-2010-01-04

Keywords:

hydrodynamic pressure, uplift, linings, slabs, hydraulic model, stilling basins, failure, instability

Abstract

An analysis was made to determinate if the pressure underneath a slab floor is affected by the flow velocity, the unsealed transverse gaps at the same level, and the separation between slab and floor to avoid level changes between gaps due to non-kinetic energy to pressure energy conversion. The variable was measured with the slab lying at the bottom or when separated from it, studying a flow with Froude numbers from 2.84 to 9.94 and depths with one-centimeter increments from 2.5 to 5.5 cm and separations between slab and bottom of 0, 0.2, 0.5, 1, and 2 mm. Furthermore, it was determined whether the measured pressure is greater than the static pressure, and whether the difference between these results corresponds to the kinetic energy of the flow that is converted into pressure energy inside the back edges of the gaps. In each test the pressure was measured along three longitudinal lines underneath the tile: one central line with 8 pressure transducers and two laterals lines (side by side from the central line), with 4 pressure sensors each. As it was assumed, energy conversion in the gaps increases the measured pressure in the bottom of the slab beyond the static pressure. In addition, the experiments confirmed that the pressure deceases in the direction of flow. Thus, an inestability factor of the floor linings of hydraulic structures was identified, being not previously considered in the failure of floor revetments in several civil engineering projects.

References

ABDUL-KHADER, M.H. and ELANGO, K. Turbulent Pressure Field beneath a Hydraulic Jump. J. of Hydraulic Research. Vol. 12, no. 4, 1974, pp. 469-489.

AKBARI, M., MITAL, M. and PANDE, B. Pressure Fluctuations on the Floor of Free and Forced Hydraulic Jump. Proceedings International Conference Modeling Civil Engineering Structures. Coventry, England, 1982, pp 163-170.

AKI, S. Dynamic Characteristic of the Force Acting on the Spillway Chute. Proceedings 12th IAHR Congress. Paper B9. Vol. 2, 1967, pp. 163-170.

ARKILIC, E.B. Measurement of the Mass Flow and Tangential Momentum Accommodation Coefficient in Silicon Micromachined Channels. Cambridge: Fluid Dynamics Research Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1997, pp. 9-22.

AMERICAN CONCRETE INSTITUTE. Recommendations for Construction of Concrete Pavements and Concrete Bases. Farmigton Hills, USA: American Concrete Institute, 1982.

BELLINI, A. and FIOROTTO, V. Direct Dynamic Force Measurements on Slab in Spillway Stilling Basin. J. of Hydraulic Engineering. ASCE. Vol. 121, no. 10, 1995, pp. 686-693.

BOWERS, C.E. and TSAI, F.Y. Fluctuating Pressures in Spillway Stilling Basins. J. Hydraulic Division. ASCE. Vol. 95, no. 6, 1969, pp. 2071-2079.

BOWERS, C.E. and TOSO, J. Karnafulli Project: Model Studies of Sapillway Damage. J. Hydraulic Engineering. ASCE. Vol. 114, no. 5, 1988, pp. 469-483.

BRÉS, G.A. Numerical Simulations of Three-Dimensional Inestabilities in Cavity Flow. Thesis for the Degree of Doctor of Philosophy. Pasadena: California Institute of Technology, 2007.

BUREAU OF INDIAN STANDAR. Structural design of energy dissipaters for spillways criteria [en línea]. Textinfo ed. preliminary. India. Julio de 2007 [citado el 28 de enero de 2009]. Disponible para World Wide Web: www.bis.org.in/sf/wrd/WRD09(489).pdf.

DEL RISCO, E. Inestabilidad del revestimiento de fondo de un tanque amortiguador. Tesis doctoral presentada a la División de Estudios de Posgrado de la Facultad de Ingeniería. México, D.F.: Universidad Nacional Autónoma de México, 1989.

DEL RISCO, E. Estudio del levantamiento de una losa de revestimiento. Informe de año sabático. Cali, Colombia: Facultad de Ingeniería, Universidad del Valle, 2006.

DJENIDI, L., ELAYARASAN, R. and ANTONIA, R.A. The turbulent boundary layer over transverse square cavities. J of Fluid Mechanics. Vol. 395, 1999, pp. 271-294.

FARHOUDI, J. and NARAYANAN, R. Force on slab beneath hydraulic jump. J. of Hydraulic Engineering. Vol. 117, no. 1, 1991, pp. 64-82.

DWOYER, D.L., NEWMAN, P.A., THAMES, F.C. and DUANE-MELSON, N.D. A Tile-Gap Flow Model for use in Aerodynamic Loads Assessment of Space Shuttle Thermal Protection System: Parallel Gap Face. NASA Technical Memorandum 83151, 1981.

ENRIGHT, R., EASON, C., DALTON, T., HODES, M., SALAMON, T., KOLODNER, P. and KRUPENKIN, T. Friction factors and nusselt numbers in microchannels with super hydrophobic walls. Proceedings of ICNMM2006, Fourth International Conference of Nanochannels, Microchannels and Minichannels. Hampton, USA: Limerick, Ireland, June 19-21, 2006.

FARHOUDI, J. and NARAYANAN, R. Force on slab beneath hydraulic jump. Journal of Hydraulic Engineering. Vol. 117, no. 1, 1991, pp. 64-82.

FIOROTTO, V. and RINALDO, A. Turbulent pressure fluctuations under hydraulic jumps. J. of Hydraulic Research. Vol. 130, 1992, pp. 499-520.

FIOROTTO, V. and RINALDO, A. Fluctuating uplift and linings design in spillway stilling basins. J. Hydraulic Enginnering. ASCE. Vol. 118, no. 4, 1992a, pp. 578-596.

HAUGEN, R.L. and DHANAK, A.M. Momentum transfer in turbulent separated flow past a rectangular cavity. J. of Applied Mechanics. Transactions of the ASME. September, 1966, pp. 641-646.

HUNT, L.R. and NOTESTINE, K.K. Aerodynamic Pressure and Heating-Rate Distributions in Tile Gaps around Chine Regions with Pressure Gradients at a Mach Numbers of 6.6. Hampton, USA: NASA Technical Paper 2988, 1990.

JENKINS, D. Space Shuttle: The History of Developing the National Space Transportation System. Melbourne Beach, USA: Walsworth Publishing Company, 1996.

KHATSURIA, R.M. Hydraulics of Spillways and Energy Dissipaters. New York: Marcel Dekker, 2005, pp. 411-424.

LEVI, E. y MAZA, J.A. Estudio sobre la flotación de losas en tanques amortiguadores. Memorias del 2o. Congreso Nacional de Hidráulica. Culiacán, México, 1972, pp. 147-165.

LEVI, E. Acción hidrodinámica de la corriente sobre revestimientos de tanque amortiguadores. Informe técnico. México, D.F.: Instituto de Ingeniería, UNAM, 1981.

LEVI, E. and DEL RISCO, E. Search for the cause of high-speed-channel revetment failures. ASCE. J. of Performance of Constructed Facilities. Vol. 3, no. 2, May, 1989, pp. 125-136.

LIU, P.Q., LIU, X.A. and LI, F.T. Failure mechanism of bottom plate in stilling basin and countermeasure for protection. J. Hydraul. Eng. (China). No. 9, 2001, pp. 1-9.

LIU, P.Q. and LI, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. Journal of Hydraulic Engineering. Vol. 133, no. 6, 2007, pp. 618-624.

MEHTA, U.B. and LAVAN, Z. Flow in a Two Dimensional Channel with a Rectangular Cavity. Washington D.C.: NASA Contractor Report 1245, 1969.

OLIVARES, J. Destrozos viales por aguacero. El Heraldo de Barranquilla. Julio de 2006.

RAHMAN, M.A. Damage at the Karnafulli dam spillway. J. of Hydraulic Division. Proceedings of the ASCE. Paper no. 9452. Vol. 98, no. HY12, 1972, pp. 2155-2170.

RAMOS, C.M. Models for Study of the Hydrodynamic Actions on Hydraulic Structures, Recent Advances in Hydraulic Physical Modelling. Series E: Applied Sciences-Volume 165. The Netherlands: Kluwer Academic Publishers, 1989.

RAJARATNAM, N. The forced hydraulic jump. Water Power. January. February, 1964, pp. 14-19, 61-65.

REIHMAN, T.CH. Laminar Flow over Transverse Rectangular Cavity. Thesis for the deegre of doctor of Philosophy. Pasadena: California Institute of Technology, 1967.

RESCH, F.J. et LEUTHEUSSER, H.J. Mesures des Turbulence dans le Ressaut Hydraulique. La Houille Blanche. No. 1, 1971, pp. 409-428.

RESCH, F.J. et LEUTHEUSSER, H.J. Mesures des Tensions de Reynolds dans le Ressaut Hydraulique. J. of Hydraulic Research. Vol. 10, no. 4, 1972, pp. 409-428.

ROUSE, H., SIAO, T.T. and NAGARATNAM, S. Turbulent characteristics of hydraulic jump. J. of Hydraulic Division. ASCE. Vol. 124, 1958, pp. 927-966.

RUDAVSKY, L. Selection of Spillway end Energy Dissipators in Preliminary Planning of Dams Development. Proceedings ICOLD. Q. 46, R. 9. Douziéme Congrés des Grands Barrages, México, 1976, pp. 153-180.

SÁNCHEZ, J.L. y ECHÁVEZ, A.G. Criterio Preliminar para el Diseño de Losas de Tanque Amortiguadores. Informe técnico. México, D.F.: Instituto de Ingeniería, UNAM, 1970.

SÁNCHEZ, J.L. y CAPELLA, A. Turbulence Effects on the Linning of Stilling Basins. Proceedings ICOLD. Q. 41, R. 83. Congrés des Grands Barrages, Madrid, 1973, pp. 1575-1592.

SHANKAR, P.N. and DESHPANDE, M.D. Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. Vol. 32, 2000, pp. 93-136.

SOUCEK, E. and GAU, J.N. Spillway and Closures for the Large Earth Dams on the Missouri River. Proceeding ICOLD. Neuviéme Congrés des Grands Barrages. Istambul, 1967, pp. 29-55.

STALLINGS ,R.L., Jr. and WILCOX, F.J., Jr. Experimental Cavity Pressure Distributions at Supersonic Speeds. Hampton, USA: NASA Technical Paper 2683, 1987.

SARKAR, S., TOKSÖZ, N. and BURNS, D.R. Fluid Flow Modeling in Fractures. Cambridge: Earth Resources Laboratory, Depth of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, MA 02139, 2002.

YEDU-KOUNG, T. and MAYS, L.W. Optimal design of stilling for overflow spillway. J. of Hydraulic Division. Proceedings of the ASCE. Vol. 108, no. 9, 1982, pp. 1163-1178.

VASILIEV, O.F. and BRUKEYEV, V.I. Statistical characteristics of pressure fluctuations in the region of hydraulic jump. Proceedings IAHR. Vol. 2, Paper B.1, 1967, pp. 1-8.

WILKES, J.O. Fluid Mechanics for Chemical Engineers. New Jersey: Prentice Hall, 1999.

Published

2010-02-15

How to Cite

del Risco Moreno, E., Hurtado-Orobio, E., & González-Betancourt, M. (2010). Experimental study of uplift pressures underneath slabs with gaps running across flow. Tecnología Y Ciencias Del Agua, 1(1), 47–57. https://doi.org/10.24850/j-tyca-2010-01-04

Most read articles by the same author(s)