Modeling the hydrological response to climate change: experiences from two south-central Chilean watersheds

Authors

DOI:

https://doi.org/10.24850/j-tyca-2010-04-02

Keywords:

climate change, hydrological modeling, SWAT, RCM, MAGICC-SCENGEN, Chile, Biobío, Andean watershed

Abstract

During the past few years, a progressive worldwide change of the climatic conditions has been observed that has consequently brought increases in the frequency and severity of phenomena like floods and droughts. Thus, it is necessary to have tools for making informed decisions. One way to assess the effects of the climate change on the hydrology of a river basin is to use a distributed hydrologic model, which once calibrated and validated is perturbed with changes (% of change in precipitation and D variation in temperature) obtained from different future climate scenarios. The objective of this work is to quantify by means of simulations done with a mathematical model perturbed with plausible scenarios of climatic change, the sensitivity of the hydrology of two sub-basins of the Biobío River. In addition, the amplitude in the response obtained from the hydrologic model perturbed with changes obtained from different Global Circulation Models is analyzed, and the impact to using signals of change derived from the application of more advanced regionalization methods is evaluated. The results indicate that for most of the modeled scenarios of climate change, a reduction in the mean monthly and annual flows will take place, being this variation greater in the spring and in the summer. These results allow to perform one of the first quantitative interpretations of the potential impacts of the climate change in the availability of water resources in the Biobío river basin.

References

ABU EL-NASR, A., ARNOLD, J.G., FEYEN, J. and BERLAMONT, J. Modelling the hydrology of a catchments using a distributed and a semi-distributed model. Hydrological Processes. Vol. 19, 2005, pp. 573-587. DOI: 10.1002/hyp.5610

ARNOLD, J.G., SRINIVASAN, R., MUTTIAH, R.S. and WILLIAMS, J.R. Large area hydrologic modeling and assessment - Part I: model development. JAWRA. Vol. 34, no. 1, 1998, pp. 73-89. DOI: 10.1111/j.1752-1688.1998.tb05961.x

CAO, W., BOWDEN, W.B., DAVIE, T. and FENEMOR, A. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchments with high spatial variability. Hydrological Processes. Vol. 20, 2006, pp. 1057-1073. DOI: 10.1002/hyp.5933

CONAMA-DGF Estudio de la variabilidad climática en Chile para el siglo XXI. Comisión Nacional del Medio Ambiente. Departamento de Geofísica. Facultad de Ciencias Físicas y Matemáticas. Santiago de Chile: Universidad de Chile, 2006, 63 pp.

CHALECKI, E.L. and GLEICK, P.H. A framework of ordered climate effects on water resources: A comprehensive bibliography. JAWRA. Vol. 35, no. 6, 1999, pp. 1657-1665. DOI: 10.1111/j.1752-1688.1999.tb04243.x

CHIEW, F.H.S. Estimation of rainfall elasticity of stream flow in Australia. Hydrological Sciences Journal. Vol. 51, 2006, pp. 613-625. DOI: 10.1623/hysj.51.4.613

DANKERS, R. and CHRISTENSEN, O.B. Climate change impact on snow coverage, evaporation and river discharge in the Sub-Arctic Tana basin, Northern Fennoscandia. Climatic Change. Vol. 69, 2005, pp. 367-392. DOI: 10.1007/s10584-005-2533-y

DI LUZIO, M., SRINIVASAN, R., ARNOLD, J.C. and NEITSCH, S.L. ArcView Interface for SWAT 2000 User's Guide. College Station: Texas Water Resources Institute, 2002, 345 pp.

DÍAZ-NIETO, J. and WILBY, R.L. A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom. Climatic Change. Vol. 69, 2005, pp. 245-268. DOI: 10.1007/s10584-005-1157-6

ECKHARDT, K., FOHRER, N. and FREDE, H.G. Automatic model calibration. Hydrological Processes. Vol. 19, 2005, pp. 651-658. DOI: 10.1002/hyp.5613

GLEICK, P.H. Methods for evaluating the regional hydrologic impacts of global climatic changes. Journal of Hydrology. Vol. 88, 1986, pp. 97-116. DOI: 10.1016/0022-1694(86)90199-X

GLEICK, P.H. Global climatic changes and regional hydrology: impacts and responses. IAHS Publication. No. 168, 1987, pp. 389-402.

GOSAIN, A.K., RAO, S., SRINIVASAN, R. and REDDY, N.G. Return-flow assessment for irrigation command in the Palleru river basin using SWAT model. Hydrological Processes. Vol. 19, 2005, pp. 673-682. DOI: 10.1002/hyp.5622

GOVENDER, M. and EVERSON, C.S. Modelling stream flow from two small South African experimental catchments using the SWAT model. Hydrological Processes. Vol. 19, 2005, pp. 683-692. DOI: 10.1002/hyp.5621

HARVEY, L.D.D., GREGORY, J., HOFFERT, M., JAIN, A., LAL, M., LEEMANS, R., RAPER, S.C.B., WIGLEY, T.M.L. and DE WOLDE, J.R. An introduction to simple climate models used in the IPCC Second Assessment Report. IPCC Technical Paper II. Houghton, J.T., L.G. Meira Filho, D.J. Griggs, y K. Maskell (editors). Geneva: Intergovernmental Panel on Climate Change, 1997, 50 pp.

HULME, M. and SHEARD, N. Climate change Scenarios for Argentina. Norwich, United Kingdom: Climate Research Unit, University of East Anglia, 1999, 6 pp.

IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. y Johnson, C.A. (editors). Cambridge and New York: Cambridge University Press, 2001, 881 pp.

IPCC. Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Pachauri, R.K. y Reisinger, A. (editores). Ginebra: IPCC, 2007, 104 pp.

LÓPEZ-MORENO, J.I. and NOGUÉS-BRAVO, D. A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrological Processes. Vol. 19, no. 16, 2005, pp. 3167-3176. DOI: 10.1002/hyp.5840

MARENGO, J.A. and AMBRIZZI, T. Use of Regional Climate Models in Impact Assessments and Adaptation Studies from Continental to Regional and Local Scales. The CREAS (Regional Climate Change Scenarios for South-America) initiative in South America. Proceedings of the 8th ICSHMO, Foz do Iguaçu, Brazil, 2006, pp. 291-296.

MATA, L. and NOBRE, C. Impacts, vulnerability and adaptation to climate change in Latin America. Lima: Background paper commissioned by the Secretariat of the United Nations Framework Convention on Climate Change, 2006, 67 pp.

NEITSCH, S.L., ARNOLD, J.C., KINIRY, J.R., WILLIAMS, J.R. and KING, K.W. Soil and Water Assessment Tool Theoretical Documentation. Version 2000. College Station: Texas Water Resources Institute, 2002, 498 pp.

STEHR, A., DEBELS, P., ROMERO, F. and ALCAYAGA, H. Hydrological modelling with SWAT under limited conditions of data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal. Vol. 53, no. 3, 2008, pp. 588-601. DOI: 10.1623/hysj.53.3.588

STEHR, A. Análisis del comportamiento hidrológico y disponibilidad de agua, bajo escenarios de cambio climático, para dos subcuencas del río Biobío incorporando el impacto del aporte nival en la zona cordillerana. Tesis para optar al grado de Doctor en Ciencias Ambientales. Concepción, Chile: Universidad de Concepción, 2008, 123 pp.

STEHR, A., DEBELS, P., ARUMI, J.L., ALCAYAGA, H. and ROMERO, F. Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data-scarce Chilean Andean basin. Hydrological Sciences Journal. Vol. 54, no. 6, 2009, pp. 1053-1067. DOI: 10.1623/hysj.54.6.1053

TRIPATHI, M.P., RAGHUWANSHI, N.S. and RAO, G.P. Effect of watershed subdivision on simulation of water balance components. Hydrological Processes. Vol. 20, 2006, pp. 1137-1156. DOI: 10.1002/hyp.5927

VAN GRIENSVEN, A. and BAUWENS, W. Multiobjective autocalibration for semidistributed water quality models. Water Resources Research. Vol. 39, no. 12, 2003, pp. 1348-1356. DOI: 10.1029/2003WR002284

VAN GRIENSVEN, A., MEIXNER, T., GRUNWALD, S., BISHOP, T. and SIRINIVASAN, R. A global sensitivity analysis tool for the parameters of multi-variable catchments models. Journal of Hydrology. Vol. 324, 2006, pp. 10-23. DOI: 10.1016/j.jhydrol.2005.09.008

VAN LIEW, M.W., ARNOLD, J.G. and BOSCH, D.D. Problems and potential of autocalibrating a hydrologic model. Transaction of the American. Society of Agriculture. Vol. 48, 2005, pp 1025-1040. DOI: 10.13031/2013.18514

WATSON, R., ZINYOWERA, M.C., MOSS, R.H. and DOKKEN, D.J. IPCC Special Report on the Regional Impacts of Climate Change: An assessment of vulnerability. Cambridge and New York: Cambridge University Press, 1998.

WHITFIELD, P., REYNOLDS, C.J. and CANNON, A.J. Modelling stream flow in present and future climates: Examples from the Georgia Basin, British Columbia. Canadian Water Resources Journal. Vol. 27, 2002, pp. 427-456. DOI: 10.4296/cwrj2704427

WIGLEY, T.M.L. MAGICC/SCENGEN 4.1: Technical Manual. Boulder, USA: National Center for Atmospheric Research, October 2003a, 14 pp.

WIGLEY, T.M.L. MAGICC/SCENGEN 4.1: User Manual. Boulder, USA: National Center for Atmospheric Research, October 2003b, 23 pp.

WILBY, R.L., CHARLES, S.P., ZORITA, E., TIMBAL, B., WHETTON, P. and MEARNS, L.O. Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental. Panel on Climate Change, http://unfccc.int/resource/cd_roms/na1/v_and_a/Resoursce_materials/Climate/StatisticalDownscalingGuidance.pdf, 2004.

XU, C.-Y. and SINGH, V.P. Review on Regional Water Resources Assessment Models under Stationary and Changing Climate. Water Resources Management. Vol. 18, 2004, pp. 591-612. DOI: 10.1007/s11269-004-9130-0

Published

2010-11-15

How to Cite

Stehr, A., Debels, P., Arumi, J. L., Alcayaga, H., & Romero, F. (2010). Modeling the hydrological response to climate change: experiences from two south-central Chilean watersheds. Tecnología Y Ciencias Del Agua, 1(4), 37–58. https://doi.org/10.24850/j-tyca-2010-04-02