Finite difference solution of the agricultural drainage Boussinesq equation with variable drainable porosity subject to a fractal radiation boundary condition

Authors

DOI:

https://doi.org/10.24850/j-tyca-2010-04-06

Keywords:

mixed formulation, head formulation, soil water retention curve, inverse modeling

Abstract

Subsurface drainage systems are used to control the depth of the water table and to reduce or prevent soil salinity. Generally, the flow of the groundwater is studied with the Bousssinesq equation, whose analytical solutions are obtained assuming that aquifer transmissivity and drainable porosity are constant. These solutions assume as well that the free surface of the water falls instantly over the drains. The general solution requires numerical methods. Some authors have demonstrated that the drain boundary condition is a fractal radiation condition and that the drainable porosity is a variable which is related to the soil retention curve. This solution has been obtained with a finite element method, which in one-dimensional form is equivalent to a finite difference method. Here, we propose a finite difference solution of the differential equation with variable drainable porosity and a fractal radiation condition. The proposed finite differences method has two formulations: the first one, with an explicit head and drainable porosity, both joined with a functional relationship, which we call mixed formulation; and the second one, which we call head formulation, with only the head. Both methods have been validated with a lineal analytical solution, and the nonlinear part is stable and brief. The proposed numerical solution is useful for the hydraulic characterization of soils with inverse modeling and for improving the design of agricultural drainage systems, considering that the assumptions of the classical solution have been eliminated.

References

BOUSSINESQ, J. Recherches the'oriques sur l'e'coulement des nappes d'eau infiltre'es dans le sol et sur le de'bit des sources. J. Math. Pure. Appl. 5me. Ser. 10, 1904, pp. 5-78.

BOUWER, H. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resources Research. Vol. 36, 1964, pp. 411-424.

BURDINE, N.T. Relative permeability calculation from size distribution data. Pet. Trans. AIME. Vol. 198, 1953, pp. 71-78. DOI: 10.2118/225-G

DUMM, L. Drain spacing formula. Agricultural Engineering. Vol. 35, 1954, pp. 726-730.

FRAGOZA, F., FUENTES, C., ZAVALA, M., ZATARÁIN, F., SAUCEDO, H. y MEJÍA, E. Drenaje agrícola subterráneo con capacidad de almacenamiento variable. Ingeniería hidráulica en México. Vol. 18, núm. 3, julio-septiembre de 2003, pp. 81-93.

FUENTES, C., BRAMBILA, F., VAUCLIN, M., PARLANGE, J.-Y. y HAVERKAMP, R. Modelación fractal de la conductividad hidráulica de los suelos no saturados. Ingeniería hidráulica en México. Vol. 16, núm. 2, abril-junio de 2001, pp. 119-137.

FUENTES, C., HAVERKAMP, R. y PARLANGE, J.-Y. Parameter constraints on closed-form soil-water relationships. Journal of Hydrology. Vol. 134: 1992, pp. 117-142. DOI: 10.1016/0022-1694(92)90032-Q

FUENTES, C., NAMUCHE, R., RENDÓN, L., PATRÓN, R., PALACIOS, O., BRAMBILA, F. y GONZÁLEZ, A. Solución de la ecuación de Boussinesq del régimen transitorio en el drenaje agrícola bajo condiciones de radiación: el caso del Valle del Carrizo, Sinaloa. Hermosillo, México: VII Congreso Nacional de Irrigación, 1997, pp. 3-141 a 3-145.

FUENTES, C., ZAVALA, M. y SAUCEDO, H. Relationship between the storage coefficient and the soil-water retention curve in subsurface agricultural drainage systems: water table drawdown. Journal of Irrigation and Drainage Engineering. Vol. 135. no. 3, 2009, pp. 279-285. DOI: 10.1061/(ASCE)0733-9437(2009)135:3(279)

FUJITA, H. The exact pattern of a concentration-dependent difussion in a semi-infinite medium, part II. Textile Research Journal. Vol. 22, 1952, pp. 823-827. DOI: 10.1177/004051755202201209

GARDNER, W.R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science. Vol. 85, 1958, pp. 228-232. DOI: 10.1097/00010694-195804000-00006

HOOGHOUDT, S. Bjidrage tot de kennis van enige natuurkundige grootheden van der grond. Verslag andbouwk Onderzoek. Vol. 46, no. 7, 1940, pp. 515-707.

PARLANGE, J.-Y., BRADDOCK, R.D., LISLEY, I. and SMITH, R.E. Three parameter infiltration equation. Soil Science. Vol. 11, 1982, pp. 170-174.

RICHARDS, L.A. Capillary conduction of liquids trough porous mediums. Physics. Vol. 1, 1931, pp. 313-333. DOI: 10.1063/1.1745010

RUSSELL, T.F. and WHEELER M.F. Finite element and finite difference methods for continuous flows in porous media. In The Mathematics of Reservoir Simulation. Ewing, R.E. (editor). Philadelphia: SIAM Publication, 1983, pp. 35-106. DOI: 10.1137/1.9781611971071.ch2

SAUCEDO, H., PACHECO, P., FUENTES, C. y ZAVALA, M. Efecto de la posición del manto freático en la evolución del frente de avance en el riego por melgas. Ingeniería hidráulica en México. Vol. 18, núm. 4, octubre-diciembre de 2003, pp. 119-126.

VAN GENUCHTEN, M. A closed-form equation for predicting the hydraulic conductivity of the unsaturated soils. Soil Sci. Soc. Amer. Journal. Vol. 44, 1980, pp. 892-898. DOI: 10.2136/sssaj1980.03615995004400050002x

ZATARÁIN, F., FUENTES, C., PALACIOS, V.O.L., MERCADO, E.J., BRAMBILA, F. y VILLANUEVA N. Modelación del transporte de agua y de solutos en el suelo. Agrociencia. Vol. 32, núm. 4, 1998, pp. 373-383.

ZAVALA, M., FUENTES, C. y SAUCEDO, H. Sobre la condición de radiación lineal en el drenaje de una columna de suelo inicialmente saturado. Ingeniería hidráulica en México. Vol. 18, núm. 2, abril-junio de 2003, pp. 121-131.

ZAVALA, M., FUENTES, C. y SAUCEDO, H. Radiación fractal en La ecuación de Boussinesq del drenaje agrícola. Ingeniería hidráulica en México. Vol. 19, núm. 3, julio-septiembre de 2004, pp. 103-111.

ZAVALA, M., FUENTES, C. and SAUCEDO, H. Nonlinear radiation in the Boussinesq equation of agricultural drainage. Journal of Hydrology. Vol. 332, no. 3, 2007, pp. 374-380. DOI: 10.1016/j.jhydrol.2006.07.009

Published

2010-11-15

How to Cite

Chávez, C., Fuentes, C., & Zavala, M. (2010). Finite difference solution of the agricultural drainage Boussinesq equation with variable drainable porosity subject to a fractal radiation boundary condition. Tecnología Y Ciencias Del Agua, 1(4), 105–117. https://doi.org/10.24850/j-tyca-2010-04-06

Most read articles by the same author(s)

1 2 > >>