Use of environmental isotopes of water and geochemistry to determine nitrate sources in south of Cuernavaca aquifer
DOI:
https://doi.org/10.24850/j-tyca-2024-03-05Keywords:
Cuernavaca aquifer, nitrate, sewage water, geochemistry, environmental isotopes of water, arsenic, uranium, meteoric water line of Cuernavaca aquiferAbstract
The Cuernavaca aquifer is the main source of permanent fresh water that supports economic development and supply to the population of the capital of the state of Morelos. During the last thirty years in the south of the Cuernavaca aquifer nitrates have increased degrading groundwater quality. The identification of the origin of the nitrate is essential to implement public policies that minimize the contamination. Taking into account the characteristics of the region such as soil type and geology, population growth, economic activities such as agriculture, and recreational activities including golf, four possible sources of nitrate are proposed in the study area: 1) Natural sources (soil organic nitrogen), 2) infiltration of wastewater, 3) infiltration of agricultural water, and 4) infiltration of water used in the irrigation of golf courses. In the southern portion of the Cuernavaca aquifer, the geochemistry and environmental isotopes of water (δ18O, δ2H, δ3H) indicate that the main nitrate contaminant source is sewage disposal. The data also indicate that the arsenic detected in the wells comes from the deepest strata of the aquifer. The results also show correlation between nitrate and uranium concentration. The data obtained allowed to determine the meteoric water line of the Cuernavaca Aquifer.
References
Brugge, D., & Buchner, V. (2011). Health effects of uranium: New research findings. Reviews on Environmental Health, 26(4), 231-24.
Canter, L. W. (1997). Nitrate in groundwater. Boca Raton, USA: Lewis Publishers.
Cardona, A. (2004). Salinization in coastal aquifers of arid zones: An example from Santo Domingo, Baja California Sur, Mexico. Environmental Geology, 45, 350-366.
Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. New York, USA: CRC Press. DOI: https://doi.org/10.1201/9781482242911
CDPH, California Department of Public Health. (2013). Drinking water contaminants: Nitrate. Sacramento, USA: California Department of Public Health.
Conagua, Comisión Nacional del Agua. (2002). Determinación de la disponibilidad de agua en el acuífero Cuernavaca (1701), estado de Morelos. México, DF, México: Subdirección General Técnica, Gerencia de Aguas Subterráneas.
Conagua, Comisión Nacional del Agua. (2010). Programa Hídrico Visión 2030 del estado de Morelos. México, DF, México: Comisión Nacional del Agua.
Conagua, Comisión Nacional del Agua. (2020). Actualización de la disponibilidad media anual de agua en el acuífero Cuernavaca (1701), estado de Morelos. México, DF, México: Subdirección General Técnica, Gerencia de Aguas Subterráneas.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436-368.
Del-Campo-Delgado, M. (2016). Lixiviación de agroquímicos en campos de golf bajo diferentes dotaciones de riego y sustratos (tesis doctoral). Universidad Autónoma del Estado de México, México.
Esquivel‐Hernández, G., Mosquera, G. M., Sánchez‐Murillo, R., Quesada‐Román, A., Birkel, C., Crespo, P., Célleri, R., Windhorst, D., Breuer, L., & Boll, J. (2019). Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015–2016). Hydrological Processes, 33(13), 1802-1817.
Froehlich, K., Kralik, M., Rank, D., & Scheifinger, H. (2008). Deuterium excess in precipitation of Alpine regions. Moisture recycling. Isotopes in Environmental Health Studies, 44(1), 61-70.
Galewsky, J., Steen-Larsen, H. C., Field R. D., Worden J., Risi C., & Schneider M. (2016), Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54, 809-865. DOI: 10.1002/2015RG000512
Gastmans, D., Santos, V., Aparecida-Galhardi, J., Felipe-Gromboni, J., Vianna-Batista L., Miotlinski, K., Kiang-Chang H., & Silvio-Govone, J. (2017). Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil. Isotopes in Environmental and Health Studies, 53(5), 518-538, DOI: 10.1080/10256016.2017.1305376
Gat, J. R. (2000). Atmospheric water balance. The isotopic perspective, Hydrological Processes, 14, 1357-1369.
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088-1090.
Guo, Z., Yan, C., Wang, Z., Xu, F., & Yang, F. (2020). Quantitative identification of nitrate sources in a coastal peri-urban watershed using hydrogeochemical indicators and dual isotopes together with the statistical approaches. Chemosphere, 243, 125364.
Haller, L., McCarthy, P., O'Brien, T., Riehle, J., & Stuhldreher, T. (2013). Nitrate pollution of groundwater. Oceanside, USA: Alpha Water Systems Inc.
IAEA, International Atomic Energy Agency. (2002). A new device for montly rainfall sampling for GNIP. Water and Environment Newsletter, (16) special issue on the global network of isotopes in precipitation, 5.
IMTA, Instituto Mexicano de la Tecnología del Agua. (2012). Plan integral para el manejo sustentable de las barrancas del norponiente del estado de Morelos. Jiutepec, México: Instituto Mexicano de la Tecnología del Agua, Fundación Gonzalo Río Arronte.
INEGI, Instituto Nacional de Estadística y Geografía. (1991). Censo Agrícola, ganadero y ejidal del INEGI. Aguascalientes, México: Instituto Nacional de Estadística y Geografía.
Jaimes-Palomera, L. R., Cortes-Silva, A., Vazquez-Sanchez, E., Aravena, R., Fritz, P., & Drimmie, R. (1989). Geoquímica isotópica del sistema hidrogeológico del valle de Cuernavaca, estado de Morelos, México. Geofísica Internacional, 28(2), 219-244.
Kurttio, P., Komulainen, H., Leino, A., Salonen, L., Auvinen, A., & Saha, H. (2005). Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environmental Health Perspectives, 113 (1), 68-72.
Liu, C. Q., Li, S. L., Lang, Y. C., & Xiao, H. Y. (2006). Using δ15N- and δ18O values to identify nitrate sources in karst ground water, Guiyang, southwest China. Environmental Science & Technology, 40(22), 6928-6933.
Martinelli, L. A., Victoria, R. L., Sternberg, L. S., Ribeiro, A., & Moreira, M. Z. (1996). Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. Journal of Hydrology, 183, 191-204.
Morales-Casique, E., Guinzberg-Belmont, J., & Ortega-Guerrero, A. (2016). Regional groundwater flow and geochemical evolution in the Amacuzac River Basin, Mexico. Hydrogeology Journal, 24, 1873-1890.
Merlivat, L., & Jouzel, J. (1979), Global climate interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal de Geophysical Research, 84(C8), 5029-5033.
Nolan, J., & Weber, K. A. (2015). Natural uranium contamination in major U.S. aquifers linked to nitrate. Environmental Science and Technology Letters, 2(8), 215-220.
Ortega, L. V., Garcia, S. A., & Pelayo, B. R. (2003). Aspectos geohidrológicos de los acuíferos del estado de Morelos. En: Oswald-Spring, U. El recurso agua en el Alto Balsas (pp. 93-107). México, DF, México: Universidad Nacional Autónoma de México, Centro Regional de Investigaciones Multidisciplinarias.
Otte, I., Detsch, F., Gütlein, A., Scholl, M., Kiese, R., Appelhans, T., & Nauss, T. (2017). Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania. Hydrological Processes, 31(22), 3932-3947. DOI: 10.1002/hyp.11311
Pacheco, J., & Cabrera, A. (1997). Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico. Hydrogeology Journal, 5, 47-53.
Pacheco, J., Marín, L., Cabrera, A., Steinich, B., & Escolero, O. (2001). Nitrate temporal and spatial patterns in 12 water-supply Wells, Yucatán México. Environmental Geology, 40(6), 708-715.
Paradis, C. J., Jagadamma, S., Watson, D. B., McKay, L. D., Hazen, T. C., Park, M., & Istok, J. D. (2016). In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions. Journal of Contaminant Hydrology, 187, 55-64.
Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, 470-471, 855-864. DOI: 10.1016/j.scitotenv.2013.10.043
Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S., Krapac, I. G., Landsberger, S., & O'Kelly, D. J. (2002). Source identification of sodium and chloride contamination in natural waters. The 12th Annual Conference of the Illinois Groundwater Consortium, USA.
Peng, H., Mayer, B., Harris, S., & Roy, K. R. (2007). The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus B: Chemical and Physical Meteorology, 59(4), 698-704.
POZCI, Programa de Ordenación de Zona Conurbada Intermunicipal. (2009). Programa de Ordenación de Zona Conurbada Intermunicipal en su modalidad de Centro de Población. Cuernavaca, Emiliano Zapata, Jiutepec, Temixco y Xochitepec. Cuernavaca, México: Programa de Ordenación de Zona Conurbada Intermunicipal.
Raisz, E. (1964). Landforms of Mexico. Mapa con texto, escala 1:3 000 000 (2nd ed.). Cambridge, USA: Office of Naval Research.
Ren, C., Zhang, Q., Wang, H., & Wang, Y. (2021). Identification of sources and transformations of nitrate in the intense human activity region of North China using a multi-isotope and Bayesian model. International Journal of Environmental Research and Public Health, 18, 8642. DOI: https://doi.org/10.3390/ijerph18168642
Ritter, W. F., & Chirnside, A. E. (1984). Impact of land use on ground-water quality in Southern Delaware. Ground Water, 22(1), 38-47.
Sagarpa, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2003). Evaluación de la alianza para el Campo 2002. Informe de evaluación estatal. México, DF, México: Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación.
Secretaría de Desarrollo Sustentable de Morelos. (2009). Programa de Ordenación de Zona Conurbada Intermunicipal en su Modalidad de Centro de Población de Cuernavaca, Emiliano Zapata, Jiutepec, Temixco y Xochitepec. Cuernavaca, México: Secretaría de Desarrollo Sustentable de Morelos.
SSA, Secretaría de Salubridad y Asistencia. (1994). NOM-127-SSA1-1994. Salud ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México, DF, México: Secretaría de Salubridad y Asistencia.
Singh, G., Sengor, S., Bhalla, A., Kumar, S. S., Stewart, B., Spycher, N., Ginn, T. M., Peyton, B. M., & Sani, R. K. (2014). Reoxidation of biogenic reduced uranium: A challenge toward bioremediation. Critical Reviews in Environmental Science and Technology, 44(4), 391-415.
Suarez-Barragán, M. D., & Ureno-Luna, J. (1988). Calidad físico-química y bacteriológica del agua subterránea del Valle de Cuernavaca, Morelos (tesis de licenciatura). Facultad de Ingeniería, Universidad Nacional Autónoma de México, México.
Scholl, M. A., Gingerich, S. B., & Tribble, G. W. (2002). The influence of microclimates and fog on stable isotope signatures used in the interpretation of regional hydrology: East Maui, Hawaii. Journal of Hydrology, 264, 170-184. DOI: https://doi.org/10.1016/S0022‐1694(02)00073‐2
Stewart, M. K. (1975). Stable isotope fractionation due to evaporation and isotope exchange of falling water drops: Application to atmospheric processes and evaporation of lakes. Journal of Geophysical Research, 80, 1133-1146.
Torres-Martínez, J. A., Abraham, M., Jürgen, M., Daesslé, L. W., Cervantes-Avilés, P. A., & Ledesma-Ruiz, R. (2021). Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environmental Pollution, 269. DOI: https://doi.org/10.1016/j.envpol.2020.115445
Victoria, R., Martinelli, L., Mortatti, J., & Richey, J. (1991). Mechanisms of water recycling in the Amazon Basin: Isotopic insights. Ambio: A Journal of Environment and Society, 20(8), 384-387.
Viers, J. H., Liptzin, D., Rosenstock, T. S., Jensen, V. B., & Hollander, A. D. (2012). Nitrogen sources and loading to groundwater. Sacramento, USA: California State Water Resources Control Board.
WHO, World Health Organization. (2007). Nitrate and nitrite in drinking-water. Background document for development of WHO guidelines for drinking-water quality. Geneva, Switzerland: World Health Organization.
WHO, World Health Organization. (2008). Guidelines for drinking-water quality (3rd ed.). Geneva, Switzerland: World Health Organization.
Zhao, Z. (2015). A global assessment of nitrate contamination in groundwater (Internship report). Delft, The Netherlands: International Groundwater Resources Assessment Centre.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.