Validating daily precipitation products estimated by remote sensing with rainfall stations in the Vilcanota basin, Peru
DOI:
https://doi.org/10.24850/j-tyca-2025-03-05Keywords:
Spatio-temporal variability, MSWEP, CHIRPSAbstract
Precipitation represents one of the most important elements within the water cycle for assessing water supply in hydrographic basins. Due to inadequate station distribution, security, terrain, accessibility, etc., there is a scarcity of this data in the Andean basins of Peru. This represents one of the main challenges faced by earth scientists and climatologists in spatially and temporally representing precipitation. In recent years, technological advancements have enabled the estimation of hydrological variables through remote sensing techniques. These data need to be evaluated alongside meteorological observations. This research assessed 11 products of remotely sensed estimated precipitation (RSEP) that estimate precipitation. The evaluation of RSEP was conducted for the period 1981-2018 at daily, ten-day, and monthly time steps. Descriptive statistics were used: mean error (ME), Pearson correlation (R), root mean square error (RMSE), mean absolute error (MAE), and relative bias (BIAS). Additionally, categorical statistics were employed: Probability of Detection (POD), False Alarm Rate (FAR), Critical Success Index (CSI). The products MSWEP, CHIRPS, TRMM-3B42, PERSIANN-CDR were found to be more efficient in representing the spatial variability of daily and accumulated precipitation in the Vilcanota basin. Remote sensing data proved useful in representing the spatiotemporal variability of precipitation in the Vilcanota basin; the results suggest that remote sensing data could be used to simulate the hydrological functioning of Andean mountainous catchments with limited in-situ information.
References
Abdallah, A. M., & Rosenberg, D. E. (2019). A data model to manage data for water resources systems modeling. Environmental Modelling and Software, 113-127. DOI: 10.1016/j.envsoft.2019.02.005
Beck, H., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A., & Weedon, G. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrolgy and Earth System Sciences, 21, 6201-6217. DOI: 10.1016/j.nimb.2010.02.072
Bisselink, B., Zambrano-Bigiarini, M., Burek, P., & De Roo, A. (2016). Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions. Journal of Hydrology: Regional Studies, 8, 112-129. DOI: 10.1016/j.ejrh.2016.09.003
Chen, L., Xu, J., Wang, G., & Shen, Z. (2019). Comparison of the multiple imputation approaches for imputing rainfall data series and their applications to watershed models. Journal of Hydrology, 572, 449-460. DOI: 10.1016/j.jhydrol.2019.03.025
Fang, J., Yang, W., Luan, Y., Du, J., Lin, A., & Zhao, L. (2019). Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmospheric Research, 223, 24-38. DOI: 10.1016/j.atmosres.2019.03.001
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2), RG2004. DOI: 10.1029/2005RG000183
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data, 2, 1-21. DOI: 10.1038/sdata.2015.66
Gebregiorgis, A. S., & Hossain, F. (2013). Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 704-718. DOI: 10.1109/TGRS.2012.2196282
Han, P., Long, D., Han, Z., Du, M., Dai, L., & Hao, X. (2019). Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sensing of Environment, 224, 44-59. DOI: 10.1016/j.rse.2019.01.041
Iqbal, M. F., & Athar, H. (2018). Validation of satellite based precipitation over diverse topography of Pakistan. Atmospheric Research, 201, 247-260. DOI: 10.1016/j.atmosres.2017.10.026
Jiang, L., & Bauer-Gottwein, P. (2019). How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. Journal of Hydrology, 572, 486-500. DOI: 10.1016/j.jhydrol.2019.03.042
Joyce, R., Janowiak, J., Arkin, P., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487-503. DOI: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
Kenabatho, P. K., Parida, B. P., & Moalafhi, D. B. (2017). Evaluation of satellite and simulated rainfall products for hydrological applications in the Notwane catchment, Botswana. Physics and Chemistry of the Earth, 100, 19-30. DOI: 10.1016/j.pce.2017.02.009
Kim, J., Lee, J., Kim, D., & Kang, B. (2019). The role of rainfall spatial variability in estimating areal reduction factors. Journal of Hydrology, 568, 416-426. DOI: 10.1016/j.jhydrol.2018.11.014
Lakshmi, V. (2004). The role of satellite remote sensing in the prediction of ungauged basins. Hydrological Processes, 18(5), 1029-1034. DOI: 10.1002/hyp.5520
Lekula, M., Lubczynski, M. W., Shemang, E. M., & Verhoef, W. (2018). Validation of satellite-based rainfall in Kalahari. Physics and Chemistry of the Earth, 105, 84-97. DOI: 10.1016/j.pce.2018.02.010
Li, D., Christakos, G., Ding, X., & Wu, J. (2018). Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). Journal of Hydrology, 556, 1139-1152. DOI: 10.1016/j.jhydrol.2017.01.006
Mahmoud, M. T., Hamouda, M. A., & Mohamed, M. M. (2019). Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmospheric Research, 219, 200-212. DOI: 10.1016/j.atmosres.2018.12.029
Marzen, M., Iserloh, T., De Lima, J. L. M. P., Fister, W., & Ries, J. B. (2017). Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Science of the Total Environment, 590-591, 502-513. DOI: 10.1016/j.scitotenv.2017.02.190
Paredes-Trejo, F. J., Barbosa, H. A., & Lakshmi-Kumar, T. V. (2017). Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of Arid Environments, 139, 26-40. DOI: 10.1016/j.jaridenv.2016.12.009
Satgé, F., Bonnet, M. P., Gosset, M., Molina, J., Hernan-Yuque-Lima, W., Pillco-Zolá, R., Timouk, F., & Garnier, J. (2016). Assessment of satellite rainfall products over the Andean plateau. Atmospheric Research, 167, 1-14. DOI: 10.1016/j.atmosres.2015.07.012
Satgé, F., Ruelland, D., Bonnet, M. P., Molina, J., & Pillco, R. (2019). Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region. Hydrology and Earth System Sciences, 23(1), 595-619. DOI: 10.5194/hess-23-595-2019
Satgé, F., Xavier, A., Zolá, R. P., Hussain, Y., Timouk, F., Garnier, J., & Bonnet, M. P. (2017). Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main bolivian watersheds. Remote Sensing, 9(4), 1-16. DOI: 10.3390/rs9040369
Simpson, J., Kummerow, C., Tao, W. K., & Adler, R. F. (1996). On the tropical rainfall measuring mission (TRMM). Meteorology and Atmospheric Physics, 60(1-3), 19-36. DOI: 10.1007/BF01029783
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9), 2035-2046. DOI: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
Steele, C., Dialesandro, J., James, D., Elias, E., Rango, A., & Bleiweiss, M. (2017). Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters. International Journal of Applied Earth Observation and Geoinformation, 63, 234-243. DOI: 10.1016/j.jag.2017.08.007
Su, F., Hong, Y., & Lettenmaier, D. P. (2008). Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology, 9(4), 622-640. DOI: 10.1175/2007jhm944.1
Sultana, R., & Nasrollahi, N. (2018). Evaluation of remote sensing precipitation estimates over Saudi Arabia. Journal of Arid Environments, 151, 90-103. DOI: 10.1016/j.jaridenv.2017.11.002
Sun, R., Yuan, H., & Yang, Y. (2018). Using multiple satellite-gauge merged precipitation products ensemble for hydrologic uncertainty analysis over the Huaihe River basin. Journal of Hydrology, 566, 406-420. DOI: 10.1016/j.jhydrol.2018.09.024
Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. Journal of Hydrology, 409(1-2), 104-117. DOI: 10.1016/j.jhydrol.2011.08.035
Tan, M. L., & Santo, H. (2018). Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202, 63-76. DOI: 10.1016/j.atmosres.2017.11.006
Tang, L., Tian, Y., Yan, F., & Habib, E. (2015). An improved procedure for the validation of satellite-based precipitation estimates. Atmospheric Research, 163, 61-73. DOI: 10.1016/j.atmosres.2014.12.016
Valverde-Ramírez, M. C., De-Campos-Velho, H. F., & Ferreira, N. J. (2005). Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology, 301(1-4), 146-162. DOI: 10.1016/j.jhydrol.2004.06.028
Wang, X., Ding, Y., Zhao, C., & Wang, J. (2019). Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmospheric Research, 218, 347-363. DOI: 10.1016/j.atmosres.2018.12.011
Zhang, A., Xiao, L., Min, C., Chen, S., Kulie, M., Huang, C., & Liang, Z. (2019a). Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmospheric Research, 216, 76-85. DOI: 10.1016/j.atmosres.2018.09.018
Zhang, S., Xiang, M., Yang, J., Fan, W., & Yi, Y. (2019b). Distributed hierarchical evaluation and carrying capacity models for water resources based on optimal water cycle theory. Ecological Indicators, 101, 432-443. DOI: 10.1016/j.ecolind.2019.01.048
Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., & Wu, X. (2019). Drought monitoring utility of satellite-based precipitation products across mainland China. Journal of Hydrology, 568, 343-359. DOI: 10.1016/j.jhydrol.2018.10.072
Zhu, H., Li, Y., Huang, Y., Li, Y., Hou, C., & Shi, X. (2018). Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China. Atmospheric Research, 207, 28-41. DOI: 10.1016/j.atmosres.2018.02.022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






