Validating daily precipitation products estimated by remote sensing with rainfall stations in the Vilcanota basin, Peru

Authors

  • Eber Risco Universidad Nacional Agraria La Molina, Lima, Perú / Centro de Investigación y Tecnología del Agua (CITA), Universidad de Ingeniería y Tecnología (UTEC), Lima, Perú https://orcid.org/0000-0001-6046-8332
  • Waldo Lavado Universidad Nacional Agraria La Molina, Lima, Perú / Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú https://orcid.org/0000-0002-0051-0743
  • Pedro Rau Centro de Investigación y Tecnología del Agua (CITA), Universidad de Ingeniería y Tecnología (UTEC), Lima, Perú https://orcid.org/0000-0002-1004-6729
  • Thomas Condom Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, Institut des Géosciences de l’Environnement, Grenoble, France, of Environmental Geosciences de l’Université Grenoble Alpes, Grenoble, Francia https://orcid.org/0000-0002-4408-8580

DOI:

https://doi.org/10.24850/j-tyca-2025-03-05

Keywords:

Spatio-temporal variability, MSWEP, CHIRPS

Abstract

Precipitation represents one of the most important elements within the water cycle for assessing water supply in hydrographic basins. Due to inadequate station distribution, security, terrain, accessibility, etc., there is a scarcity of this data in the Andean basins of Peru. This represents one of the main challenges faced by earth scientists and climatologists in spatially and temporally representing precipitation. In recent years, technological advancements have enabled the estimation of hydrological variables through remote sensing techniques. These data need to be evaluated alongside meteorological observations. This research assessed 11 products of remotely sensed estimated precipitation (RSEP) that estimate precipitation. The evaluation of RSEP was conducted for the period 1981-2018 at daily, ten-day, and monthly time steps. Descriptive statistics were used: mean error (ME), Pearson correlation (R), root mean square error (RMSE), mean absolute error (MAE), and relative bias (BIAS). Additionally, categorical statistics were employed: Probability of Detection (POD), False Alarm Rate (FAR), Critical Success Index (CSI). The products MSWEP, CHIRPS, TRMM-3B42, PERSIANN-CDR were found to be more efficient in representing the spatial variability of daily and accumulated precipitation in the Vilcanota basin. Remote sensing data proved useful in representing the spatiotemporal variability of precipitation in the Vilcanota basin; the results suggest that remote sensing data could be used to simulate the hydrological functioning of Andean mountainous catchments with limited in-situ information.

References

Abdallah, A. M., & Rosenberg, D. E. (2019). A data model to manage data for water resources systems modeling. Environmental Modelling and Software, 113-127. DOI: 10.1016/j.envsoft.2019.02.005

Beck, H., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A., & Weedon, G. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrolgy and Earth System Sciences, 21, 6201-6217. DOI: 10.1016/j.nimb.2010.02.072

Bisselink, B., Zambrano-Bigiarini, M., Burek, P., & De Roo, A. (2016). Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions. Journal of Hydrology: Regional Studies, 8, 112-129. DOI: 10.1016/j.ejrh.2016.09.003

Chen, L., Xu, J., Wang, G., & Shen, Z. (2019). Comparison of the multiple imputation approaches for imputing rainfall data series and their applications to watershed models. Journal of Hydrology, 572, 449-460. DOI: 10.1016/j.jhydrol.2019.03.025

Fang, J., Yang, W., Luan, Y., Du, J., Lin, A., & Zhao, L. (2019). Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmospheric Research, 223, 24-38. DOI: 10.1016/j.atmosres.2019.03.001

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2), RG2004. DOI: 10.1029/2005RG000183

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data, 2, 1-21. DOI: 10.1038/sdata.2015.66

Gebregiorgis, A. S., & Hossain, F. (2013). Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 704-718. DOI: 10.1109/TGRS.2012.2196282

Han, P., Long, D., Han, Z., Du, M., Dai, L., & Hao, X. (2019). Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sensing of Environment, 224, 44-59. DOI: 10.1016/j.rse.2019.01.041

Iqbal, M. F., & Athar, H. (2018). Validation of satellite based precipitation over diverse topography of Pakistan. Atmospheric Research, 201, 247-260. DOI: 10.1016/j.atmosres.2017.10.026

Jiang, L., & Bauer-Gottwein, P. (2019). How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. Journal of Hydrology, 572, 486-500. DOI: 10.1016/j.jhydrol.2019.03.042

Joyce, R., Janowiak, J., Arkin, P., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487-503. DOI: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

Kenabatho, P. K., Parida, B. P., & Moalafhi, D. B. (2017). Evaluation of satellite and simulated rainfall products for hydrological applications in the Notwane catchment, Botswana. Physics and Chemistry of the Earth, 100, 19-30. DOI: 10.1016/j.pce.2017.02.009

Kim, J., Lee, J., Kim, D., & Kang, B. (2019). The role of rainfall spatial variability in estimating areal reduction factors. Journal of Hydrology, 568, 416-426. DOI: 10.1016/j.jhydrol.2018.11.014

Lakshmi, V. (2004). The role of satellite remote sensing in the prediction of ungauged basins. Hydrological Processes, 18(5), 1029-1034. DOI: 10.1002/hyp.5520

Lekula, M., Lubczynski, M. W., Shemang, E. M., & Verhoef, W. (2018). Validation of satellite-based rainfall in Kalahari. Physics and Chemistry of the Earth, 105, 84-97. DOI: 10.1016/j.pce.2018.02.010

Li, D., Christakos, G., Ding, X., & Wu, J. (2018). Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). Journal of Hydrology, 556, 1139-1152. DOI: 10.1016/j.jhydrol.2017.01.006

Mahmoud, M. T., Hamouda, M. A., & Mohamed, M. M. (2019). Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmospheric Research, 219, 200-212. DOI: 10.1016/j.atmosres.2018.12.029

Marzen, M., Iserloh, T., De Lima, J. L. M. P., Fister, W., & Ries, J. B. (2017). Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Science of the Total Environment, 590-591, 502-513. DOI: 10.1016/j.scitotenv.2017.02.190

Paredes-Trejo, F. J., Barbosa, H. A., & Lakshmi-Kumar, T. V. (2017). Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of Arid Environments, 139, 26-40. DOI: 10.1016/j.jaridenv.2016.12.009

Satgé, F., Bonnet, M. P., Gosset, M., Molina, J., Hernan-Yuque-Lima, W., Pillco-Zolá, R., Timouk, F., & Garnier, J. (2016). Assessment of satellite rainfall products over the Andean plateau. Atmospheric Research, 167, 1-14. DOI: 10.1016/j.atmosres.2015.07.012

Satgé, F., Ruelland, D., Bonnet, M. P., Molina, J., & Pillco, R. (2019). Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region. Hydrology and Earth System Sciences, 23(1), 595-619. DOI: 10.5194/hess-23-595-2019

Satgé, F., Xavier, A., Zolá, R. P., Hussain, Y., Timouk, F., Garnier, J., & Bonnet, M. P. (2017). Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main bolivian watersheds. Remote Sensing, 9(4), 1-16. DOI: 10.3390/rs9040369

Simpson, J., Kummerow, C., Tao, W. K., & Adler, R. F. (1996). On the tropical rainfall measuring mission (TRMM). Meteorology and Atmospheric Physics, 60(1-3), 19-36. DOI: 10.1007/BF01029783

Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9), 2035-2046. DOI: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2

Steele, C., Dialesandro, J., James, D., Elias, E., Rango, A., & Bleiweiss, M. (2017). Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters. International Journal of Applied Earth Observation and Geoinformation, 63, 234-243. DOI: 10.1016/j.jag.2017.08.007

Su, F., Hong, Y., & Lettenmaier, D. P. (2008). Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology, 9(4), 622-640. DOI: 10.1175/2007jhm944.1

Sultana, R., & Nasrollahi, N. (2018). Evaluation of remote sensing precipitation estimates over Saudi Arabia. Journal of Arid Environments, 151, 90-103. DOI: 10.1016/j.jaridenv.2017.11.002

Sun, R., Yuan, H., & Yang, Y. (2018). Using multiple satellite-gauge merged precipitation products ensemble for hydrologic uncertainty analysis over the Huaihe River basin. Journal of Hydrology, 566, 406-420. DOI: 10.1016/j.jhydrol.2018.09.024

Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. Journal of Hydrology, 409(1-2), 104-117. DOI: 10.1016/j.jhydrol.2011.08.035

Tan, M. L., & Santo, H. (2018). Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202, 63-76. DOI: 10.1016/j.atmosres.2017.11.006

Tang, L., Tian, Y., Yan, F., & Habib, E. (2015). An improved procedure for the validation of satellite-based precipitation estimates. Atmospheric Research, 163, 61-73. DOI: 10.1016/j.atmosres.2014.12.016

Valverde-Ramírez, M. C., De-Campos-Velho, H. F., & Ferreira, N. J. (2005). Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology, 301(1-4), 146-162. DOI: 10.1016/j.jhydrol.2004.06.028

Wang, X., Ding, Y., Zhao, C., & Wang, J. (2019). Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmospheric Research, 218, 347-363. DOI: 10.1016/j.atmosres.2018.12.011

Zhang, A., Xiao, L., Min, C., Chen, S., Kulie, M., Huang, C., & Liang, Z. (2019a). Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmospheric Research, 216, 76-85. DOI: 10.1016/j.atmosres.2018.09.018

Zhang, S., Xiang, M., Yang, J., Fan, W., & Yi, Y. (2019b). Distributed hierarchical evaluation and carrying capacity models for water resources based on optimal water cycle theory. Ecological Indicators, 101, 432-443. DOI: 10.1016/j.ecolind.2019.01.048

Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., & Wu, X. (2019). Drought monitoring utility of satellite-based precipitation products across mainland China. Journal of Hydrology, 568, 343-359. DOI: 10.1016/j.jhydrol.2018.10.072

Zhu, H., Li, Y., Huang, Y., Li, Y., Hou, C., & Shi, X. (2018). Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China. Atmospheric Research, 207, 28-41. DOI: 10.1016/j.atmosres.2018.02.022

Published

2025-05-01

How to Cite

Risco, E., Lavado, W., Rau, P., & Condom, T. (2025). Validating daily precipitation products estimated by remote sensing with rainfall stations in the Vilcanota basin, Peru. Tecnología Y Ciencias Del Agua, 16(3), 176–229. https://doi.org/10.24850/j-tyca-2025-03-05

Issue

Section

Articles