Calculation of the blue water footprint in the pharmaceutical industry: Case of study for the production process of water for injections
DOI:
https://doi.org/10.24850/j-tyca-2026-01-06Palabras clave:
Water footprint, pollution, eco-efficiency, water for injections, WFI, pharmaceutical, ColombiaResumen
Society and industry contribute directly and indirectly to the depletion and contamination of water resources. The water footprint is an indicator that measures the total volume of freshwater consumption, and direct or indirect contamination by producers or consumers. The methodology for its evaluation includes three types of footprints: blue, green, and gray. The first two express the volume of water consumed according to the source (aquifers or groundwater for the blue, and rainwater for the green), and the third is the volume contaminated in the production process. This article focused on the calculation of the Water Footprint for the production process of Water for Injections (WFI), in Ecar laboratories in Medellín, Colombia. A comparison is made between the previous conventional distillation system and the new thermocompression system. Additionally, a sensitivity analysis based on the influence of variation of the production efficiency of the new system on the blue water footprint, is presented. As conclusions, it was found that thanks to the reduction of water waste, there was a decrease of 76 % in the water footprint of the new system compared to the previous one. Besides, a higher sensitivity of the water footprint was found when smaller efficiencies of the thermocompression method were considered, evidencing the importance of performing periodical maintenance on the production equipment.
Referencias
Alder, A. C., Schaffner, C., Majewsky, M., Klasmeier, J., & Fenner, K. (2010). Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Research, 44(3), 936-948. DOI: https://doi.org/10.1016/J.WATRES.2009.10.002
Abd-Kadir, N. H., Naji, Y. A., Muhammad, Z., & Bashir, S. (2024). Assessment of water footprints in different sectors: Utilization, safety and challenges. In: Bandh, S. A., & Malla, F. A. (eds.). Water footprints and sustainable development (pp. 17-28). Amsterdam, Netherlands: Elsevier. DOI: https://doi.org/10.1016/B978-0-443-23631-0.00002-9
Bailey, K., Basu, A., & Sharma, S. (2022). The environmental impacts of fast fashion on water quality: A systematic review. Water, 14(7), 1073. DOI: https://doi.org/10.3390/W14071073
Banerjee, A., Gautam, R., Mudliar, S., Bhaskar, T., & Ghosh, D. (2023). Water footprint and wastewater quality assessment of yeast single cell oil production: Gate to gate approach for industrial water sustainability. Science of the Total Environment, 866, 161127. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.161127
Çankaya, S. (2023). Evaluation of the impact of water reclamation on blue and grey water footprint in a municipal wastewater treatment plant. Science of the Total Environment, 903, 166196. DOI: https://doi.org/10.1016/J.SCITOTENV.2023.166196
Colla, V., Matino, I., Branca, T. A., Fornai, B., Romaniello, L., & Rosito, F. (2017). Efficient use of water resources in the steel industry. Water, 9(11), 874. DOI: https://doi.org/10.3390/W9110874
Dey, A., Remesan, R., & Kumar, R. (2023). Blue and green water redistribution dependency on precipitation datasets for a tropical Indian River basin. Journal of Hydrology: Regional Studies, 46, 101361. DOI: https://doi.org/10.1016/J.EJRH.2023.101361
EPM. (2024). Plantas de potabilización. Retrieved from https://www.epm.com.co/institucional/sobre-epm/nuestras-plantas/plantas-de-agua.html
Francisco, F. D. S., Mirre, R. C., Calixto, E. E. S., Pessoa, F. L. P., & Queiroz, E. M. (2014). Management of water consumption in pulp and paper industry. A case study using water sources diagram. Chemical Engineering Transactions, 39, 1255-1260. DOI: https://doi.org/10.3303/CET1439210
Fridman, D., Biran, N., & Kissinger, M. (2021). Beyond blue: An extended framework of blue water footprint accounting. Science of the Total Environment, 777, 146010. DOI: https://doi.org/10.1016/J.SCITOTENV.2021.146010
Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., & Marathe, K. V. (2014). Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Industrial and Engineering Chemistry Research, 53(29), 11571-11592. DOI: https://doi.org/10.1021/IE501210J
Gerbens-Leenes, P. W., Hoekstra, A. Y., & Bosman, R. (2018). The blue and grey water footprint of construction materials: Steel, cement and glass. Water Resources and Industry, 19, 1-12. DOI: https://doi.org/10.1016/J.WRI.2017.11.002
Gil, R., Bojacá, C. R., & Schrevens, E. (2017). Uncertainty of the agricultural grey water footprint based on high resolution primary data. Water Resources Management, 31(11), 3389-3400. DOI: https://doi.org/10.1007/S11269-017-1674-X
Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371-385. DOI: https://doi.org/10.1007/S10584-013-0853-X
Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225(1-2), 109-118. DOI: https://doi.org/10.1016/S0048-9697(98)00337-4
Hoekstra, A. Y. (2015). The water footprint of industry. In: Klemeš, J. J. (ed.). Assessing and measuring environmental impact and sustainability (pp. 221-254). Oxford, UK: Butterworth-Heinemann. DOI: https://doi.org/10.1016/B978-0-12-799968-5.00007-5
Hoekstra, A. Y. (2019). Green-blue water accounting in a soil water balance. Advances in Water Resources, 129, 112-117. DOI: https://doi.org/10.1016/J.ADVWATRES.2019.05.012
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. London, UK: Routledge. DOI: https://doi.org/10.4324/9781849775526
Hoekstra, A. Y. (2017). Water footprint assessment: Evolvement of a new research field. Water Resources Management, 31(10), 3061-3081. DOI: https://doi.org/10.1007/S11269-017-1618-5
Jaimes-Urbina, J. A., & Vera-Solano, J. A. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización. Informador Técnico, 84(2). DOI: https://doi.org/10.23850/22565035.2305
Jeyrani, F., Morid, S., & Srinivasan, R. (2021). Assessing basin blue-green available water components under different management and climate scenarios using SWAT. Agricultural Water Management, 256, 107074. DOI: https://doi.org/10.1016/J.AGWAT.2021.107074
Jungfer, C., & Track, T. (2016). Integrated water management in the chemical industry (E4Water). Water Resources and Industry, 14, 1-2. DOI: https://doi.org/10.1016/J.WRI.2016.05.002
Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research, 42(13), 3498-3518. DOI: https://doi.org/10.1016/J.WATRES.2008.04.026
Lamastra, L., Suciu, N. A., Novelli, E., & Trevisan, M. (2014). A new approach to assessing the water footprint of wine: An Italian case study. Science of the Total Environment, 490, 748-756. DOI: https://doi.org/10.1016/J.SCITOTENV.2014.05.063
Liu, C., Kroeze, C., Hoekstra, A. Y., & Gerbens-Leenes, W. (2012). Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators, 18, 42-49. DOI: https://doi.org/10.1016/J.ECOLIND.2011.10.005
Luo, Y., Wu, X., & Ding, X. (2022). Carbon and water footprints assessment of cotton jeans using the method based on modularity: A full life cycle perspective. Journal of Cleaner Production, 332, 130042. DOI: https://doi.org/10.1016/J.JCLEPRO.2021.130042
Martínez-Alcalá, I., Pellicer-Martínez, F., & Fernández-López, C. (2018). Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse. Water Research, 135, 278-287. DOI: https://doi.org/10.1016/J.WATRES.2018.02.033
Manzardo, A., Ren, J., Piantella, A., Mazzi, A., Fedele, A., & Scipioni, A. (2014). Integration of water footprint accounting and costs for optimal chemical pulp supply mix in paper industry. Journal of Cleaner Production, 72, 167-173. DOI: https://doi.org/10.1016/J.JCLEPRO.2014.03.014
Mekonnen, M. M., & Hoekstra, A. Y. (2015). Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environmental Science and Technology, 49(21), 12860-12868. DOI: https://doi.org/10.1021/acs.est.5b03191
Mekonnen, M. M., & Hoekstra, A. Y. (2018). Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: A high-resolution global study. Water Resources Research, 54(1), 345-358. DOI: https://doi.org/10.1002/2017WR020448
Mishra, R., Kumar, A., Singh, E., Kumar, S., Tripathi, V. K., Jha, S. K., & Shukla, S. K. (2022). Current status of available techniques for removal of heavy metal contamination in the river ecosystem. Ecological Significance of River Ecosystems: Challenges and Management Strategies, 217–234. DOI: https://doi.org/10.1016/B978-0-323-85045-2.00007-8
Morera, S., Corominas, L., Poch, M., Aldaya, M. M., & Comas, J. (2016). Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production, 112, 4741-4748. DOI: https://doi.org/10.1016/j.jclepro.2015.05.102
Mueller, S. A., Carlile, A., Bras, B., Niemann, T. A., Rokosz, S. M., McKenzie, H. L., Kim, H. C., & Wallington, T. J. (2015). Requirements for water assessment tools: An automotive industry perspective. Water Resources and Industry, 9, 30-44. DOI: https://doi.org/10.1016/J.WRI.2014.12.001
Pahlow, M., Snowball, J., & Fraser, G. (2015). Water footprint assessment to inform water management and policy making in South Africa. Water SA, 41(3), 300-313. DOI: https://doi.org/10.4314/WSA.V41I3.02
Pettigrew, L., Blomenhofer, V., Hubert, S., Groß, F., & Delgado, A. (2015). Optimisation of water usage in a brewery clean-in-place system using reference nets. Journal of Cleaner Production, 87(1), 583-593. DOI: https://doi.org/10.1016/J.JCLEPRO.2014.10.072
Raja, A. S. M., Arputharaj, A., Saxena, S., & Patil, P. G. (2019). Water requirement and sustainability of textile processing industries. In: Muthu, S. S. (ed.). Water in textiles and fashion: Consumption, footprint, and life cycle assessment (pp. 155-173). Santa Rosa, USA: Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-102633-5.00009-9
Strade, E., Kalnina, D., & Kulczycka, J. (2020). Water efficiency and safe re-use of different grades of water. Topical issues for the pharmaceutical industry. Water Resources and Industry, 24, 100132. DOI: https://doi.org/10.1016/J.WRI.2020.100132
Talat, N. (2020). Recent trends and research strategies for treatment of water and wastewater in India. Water Conservation and Wastewater Treatment in BRICS Nations, 139-168. DOI: https://doi.org/10.1016/B978-0-12-818339-7.00007-2
Taylor, R. P., Jones, C. L. W., Laing, M., & Dames, J. (2018). The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production. Water Resources and Industry, 19, 47-60. DOI: https://doi.org/10.1016/J.WRI.2018.02.001
Ter-Laak, T. L., van der Aa, M., Houtman, C. J., Stoks, P. G., & van Wezel, A. P. (2010). Relating environmental concentrations of pharmaceuticals to consumption: A mass balance approach for the river Rhine. Environment International, 36(5), 403-409. DOI: https://doi.org/10.1016/J.ENVINT.2010.02.009
Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245-3260. DOI: https://doi.org/10.1016/S0043-1354(98)00099-2
Unidad de Planeación Minero Energética, & Pontificia Universidad Javeriana. (2015). Atlas potencial hidroenergético de Colombia. Bogotá, Colombia: Unidad de Planeación Minero Energética UPME. Retrieved from https://www1.upme.gov.co/Paginas/Primer-Atlas-hidroenergetico-revela-gran-potencial-en-Colombia.aspx
Vale, R. L., Netto, A. M., Toríbio De-Lima-Xavier, B., De-Lâvor-Paes-Barreto, M., & Siqueira-da-Silva, J. P. (2019). Assessment of the gray water footprint of the pesticide mixture in a soil cultivated with sugarcane in the northern area of the State of Pernambuco, Brazil. Journal of Cleaner Production, 234, 925-932. DOI: https://doi.org/10.1016/J.JCLEPRO.2019.06.282
Valta, K., Kosanovic, T., Malamis, D., Moustakas, K., & Loizidou, M. (2015). Overview of water usage and wastewater management in the food and beverage industry. Desalination and Water Treatment, 53(12), 3335-3347. DOI: https://doi.org/10.1080/19443994.2014.934100
Winker, M., Faika, D., Gulyas, H., & Otterpohl, R. (2008). A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellowwater. Science of the Total Environment, 399(1-3), 96-104. DOI: https://doi.org/10.1016/J.SCITOTENV.2008.03.027
Wöhler, L., Niebaum, G., Krol, M., & Hoekstra, A. Y. (2020). The grey water footprint of human and veterinary pharmaceuticals. Water Research X, 7, 100044. DOI: https://doi.org/10.1016/J.WROA.2020.100044
Zhou, L., Xu, K., Cheng, X., Xu, Y., & Jia, Q. (2017). Study on optimizing production scheduling for water-saving in textile dyeing industry. Journal of Cleaner Production, 141, 721-727. DOI: https://doi.org/10.1016/J.JCLEPRO.2016.09.047
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial






