Filter packed with Al-sludge waste for phosphorus removal as a polishing system in a wastewater treatment plant

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-2024-06-07

Palabras clave:

Wastewater polishing treatment, phosphorus removal, decentralized WWTP, Al-sludge filtration, biofiltration system, wastes reuse, filtration over wood chips, residual Al-sludge reuse

Resumen

Recently, using residual aluminum sludge (Al-sludge) from drinking water treatment plants for phosphorus removal has been assessed and it has shown to be highly efficient. However, most of the studies have been conducted using synthetic water. Only a few works have applied this method to real wastewater (WW), and none of them have been tested in continuous mode, as a polishing step, in a pilot-scale, decentralized wastewater treatment plant (WWTP).

This paper aimed to evaluate the performance of an immersed filter packed with a bed of residual Al-sludge as a polishing system for Phosphorous removal, in a pilot-scale, decentralized WWTP.

The study determined at laboratory-scale the capacity for phosphorus removal through batch and continuous tests using both synthetic and real wastewater and evaluated the effect of retention time. Based on the results, an Al-sludge immersed filter (Al-sludge Filter) at pilot-scale was constructed, implemented, and evaluated as a polishing step for the effluent of a decentralized-WWTP.

The results showed that during continuous testing with real WW, the phosphorus removal capacity was 2.55 mg P-PO43-∙g-1 per gram of Al sludge using a retention time of 120 min. The Al-sludge filter as a polishing system presented an average removal efficiency of 94 ± 8 % and an effluent concentration of under 0.50 mg P-PO43-∙l-1 during the first 20 operational days. For the next 17 days, the system removed 85 ± 9 % on average, showing an effluent concentration of under 1.0 mg P-PO43-∙l-1. From operational day 32 onwards, the removal efficiency was 63.6 ± 10.7 %, with an average effluent concentration of 2.20 ± 0.39 mg P-PO43-∙l-1.

Citas

Ádám, K., Krogstad, T., Vråle, L., Søvik, A. K., & Jenssen, P. D. (2007). Phosphorus retention in the filter materials shellsand and filtralite P®-Batch and column experiment with synthetic P solution and secondary wastewater. Journal of Ecological Engineering, 29, 200-208. DOI: 10.1016/j.ecoleng.2006.09.021

APHA, American Public Health Association. (2005). Standard methods for the examination of water and wastewater (23rd ed.). Washington, DC, USA: American Public Health Association.

Arias, C., & Brix, H. (2005). Phosphorus removal in constructed wetlands: Can use suitable alternative media be identified? Water Science and Technology, 51, 267-273.

ASTM. (1997). Standard test method for particle size distribution of granular activated carbon. DOI: 10.1520/D2862-10.2

Alayu, E., & Leta, S. (2021). Post treatment of anaerobically treated brewery effluent using pilot scale horizontal subsurface flow constructed wetland system. Bioresources and Bioprocessing, 8(8), 2-19. DOI: 10.1186/s40643-020-00356-0

Babatunde, A. O., & Zhao, Y. Q. (2009a). Forms, patterns and extractability of phosphorus retained in alum sludge used as substrate in laboratory-scale constructed wetland systems. Chemical Engineering Journal, 152, 8-13. DOI: 10.1016/j.cej.2009.03.020

Babatunde, A. O., & Zhao, Y. Q. (2009b). Phosphorus removal in laboratory-scale unvegetated vertical subsurface flow constructed wetland systems using alum sludge as main substrate. Water Science and Technology, 60, 483-489. DOI: 10.2166/wst.2009.384

Babatunde, A. O., Zhao, Y. Q., Burke, A. M., Morris, M. A., & Hanrahan, J. P. (2009). Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands. Environmental Pollution, 157, 2830-2836. DOI: 10.1016/j.envpol.2009.04.016

Brooks, A. S., Rozenwald, M. N., Goehring, L. D., Lion, L. W., & Steenhuis, T. S. (2000). Phosphorus removal by wollanstonite: A constructed wetland substrate. Journal of Ecological Engineering, 15, 121-132.

CECA. (1989). CE-CCA-001/89. Acuerdo que establece los Criterios Ecológicos de Calidad del Agua. Diario Oficial de la Federación. Recuperado de https://www.dof.gob.mx/nota_detalle.php?codigo=4837548&fecha=13/12/1989#gsc.tab=0

Därr, G. M., & Ludwig, U. (1973). Determination of the specific surface by adsorption from solution. Matériaux et Construction, 6, 233-237.

De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing Phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38, 4222-4246. DOI: 10.1016/j.watres.2004.07.014

Doherty, L., Zhao, Y., Zhao, X., & Wang, W. (2015). Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 266, 74-81. DOI: 10.1016/j.cej.2014.12.063

Dong, C. S., Ju, S. C., Hong, J. L., & Jong, S. H. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, 39, 2445-2457. DOI: 10.1016/j.watres.2005.04.032

Drizo, A., Comeau, Y., Forget, C., & Chapuis, R. P. (2002). Phosphorus saturation potential: A parameter for estimating the longevity of constructed wetland systems. Environmental Science & Technoly, 36, 4642-4648. DOI: 10.1021/es011502v

Drizo, A., Forget, C., Chapuis, R.P., & Comeau, Y. (2006). Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research, 40, 1547-1554. DOI: 10.1016/j.watres.2006.02.001

Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 33, 3595-3602. DOI: 10.1016/S0043-1354(99)00082-2

EU. (2014). EEC Council (1991). 91/271/EEC of 21 May 1991 concerning urban waste-water treatment. EEC Council Dir. 10. Recovered from http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:31991L0271

El-Sergany, M., & Shanableh, A. (2012). Phosphorus removal using Al-modified bentonite clay. Effect of particle size. Advanced Biomedical Engineering, 6, 323-329.

Garzón-Zúñiga, M. A., Buelna, G., & Moeller-Chávez, G. E. (2012). La biofiltración sobre materiales orgánicos, nueva tecnología sustentable para tratar agua residual en pequeñas comunidades e industrias. Tecnología y ciencias del agua, 3(3), 153-162. Recovered from https://revistatyca.org.mx/index.php/tyca/article/view/255

Garzón-Zúñiga, M. A., González Zurita, J., & García-Barrios, R. (2016). Evaluación de un sistema de tratamiento doméstico para reúso de agua residual. Revista Internacional de Contaminación Ambiental, 32, 199-211. DOI: 10.20937/RICA.2016.32.02.06

George, D. B., Berk, S. G., Adams, V. D., Ting, R. S., Roberts, R. O., Parks, L. H., & Lott, R. C. (1995). Toxicity of alum sludge extracts to a freshwater alga, protozoan, fish, and marine bacterium. Archives of Environmental Contamination and Toxicology, 29, 149-158. DOI: 10.1007/BF00212964

Gustafsson, J. P., Renman, A., Renman, G., & Poll, K. (2008). Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Research, 42, 189-197. DOI: 10.1016/j.watres.2007.06.058

Hedström, A. (2006). Reactive filter systems for small scale wastewater treatment a literature review. Vatten, 62, 253–263.

Herrmann, I., Jourak, A., Hedström, A., Lundström, T. S., & Viklander, M. (2013). The effect of hydraulic loading rate and influent source on the binding capacity of phosphorus filters. PLoS One, 8(8). DOI: 10.1371/journal.pone.0069017

Maher, C., Neethling, J. B., Murthy, S., & Pagilla, K. (2015). Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level Phosphorus effluents, Water Research, 85, 226-234. DOI: 10.1016/j.watres.2015.08.025

Maqbool, N., Khan, Z., & Asghar, A. (2016). Reuse of alum sludge for Phosphorus removal from municipal wastewater. Desalination and Water Treatment, 57, 13246-13254 DOI: 10.1080/19443994.2015.1055806

Mortula, M., Bard, S. M., Walsh, M. E., & Gagnon, G. A. (2008). Aluminum toxicity and ecological risk assessment of dried alum residual into surface water disposal. Canadian Journal of Civil Engineering, 36(1), 127-136. DOI: 10.1139/S08-042

Muisa, N., Nhapi, I., Ruziwa, W., & Manyuchi, M. M. (2020). Utilization of alum sludge as adsorbent for Phosphorus removal in municipal wastewater: A review. Journal of Water Process Engineering, 35. DOI: 10.1016/j.jwpe.2020.101187

Park, W. H. (2009). Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal. Ecological Engineering, 35, 1275-1282. DOI: 10.1016/j.ecoleng.2009.05.015

Semarnat, Secretaría del Medio Ambiente y Recursos Naturales. (1996). NOM-001-SEMARNAT-1996 Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de la Federación, 35, México.

Semarnat, Secretaría del Medio Ambiente y Recursos Naturales. (11 de marzo, 2022). NORMA Oficial Mexicana NOM-001-SEMARNAT-2021, Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. Diario Oficial de la Federación, 35, México.

Takashima, M., Nakamura, S., Takano, M., & Ikemoto, R. (2015). Treatment of eutrophic lake water and Phosphorus recovery by reusing alum sludge and/or wood. Journal of Water Reuse and Desalination, 5, 446-453. DOI: 10.2166/wrd.2015.130

UN-HABITAT. (2008). Constructed wetlands manual. Recovered from https://sswm.info/sites/default/files/reference_attachments/UN%20HABITAT%202008%20Constructed%20Wetlands%20Manual.pdf

USEPA, United States Environmental Protection Agency. (September, 2012). EPA/600/R-12/61. Guidelines for water reuse. Washington, DC, USA: United States Environmental Protection Agency, Office of Wastewater Management, Office of Water.

Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands. A review. Ecological Engineering, 37, 70-89. DOI: 10.1016/j.ecoleng.2009.08.003

Yang, Y., Zhao, Y. Q., & Kearney, P. (2008). Influence of ageing on the structure and phosphate adsorption capacity of dewatered alum sludge. Chemical Engineering Journal, 145, 276-284. DOI: 10.1016/j.cej.2008.04.026

Zhao, Y. Q., Babatunde, A. O., Zhao, X. H., & Li, W. C. (2009) Development of alum sludge-based constructed wetland: An innovative and cost-effective system for wastewater treatment, Journal of Environmental Science and Health, Part A, 44(8), 827-832, DOI: 10.1080/10934520902928685

Zhao, Y. Q., Babatunde, A. O., Hu, Y. S., Kumar, J. L. G., & Zhao, X. H. (2011). Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochemistry, 46, 278-283. DOI: 10.1016/j.procbio.2010.08.023

Publicado

2024-11-01

Cómo citar

Garzón-Zúñiga, M. A., Navarro-Franco, J. A., & Moreno Andrade, I. (2024). Filter packed with Al-sludge waste for phosphorus removal as a polishing system in a wastewater treatment plant. Tecnología Y Ciencias Del Agua, 15(6), 311–353. https://doi.org/10.24850/j-tyca-2024-06-07

Artículos más leídos del mismo autor/a