Bivariate flood frequency analysis of dates of occurrence and maximum flow through Copula functions
DOI:
https://doi.org/10.24850/j-tyca-2024-04-03Keywords:
Dates of occurrence, von Mises distribution, Copula functions, Kendall's tau ratio, joint empirical probabilities, dependency on the extreme right, joint and conditional return periodsAbstract
In the center and south of the Mexican Republic, each year the hurricanes of the Caribbean Sea and the Pacific Ocean cause floods that lead to a wet season and that generally increase in magnitude and danger as the cyclone season progresses. Both conditions allow bivariate frequency analysis of their dates of occurrence and their maximum flows (Qm). In this study, the bivariate distribution was formed based on the Gumbel-Hougaard Copula function, which satisfies the observed dependency condition () and which combines the von Mises distributions as marginal distributions for the dates of occurrence in the year and for the Qm a suitable probabilistic function. The exposed theory is applied to the annual floods recorded at the Guamúchil gauging station of Hydrological Region No. 10 (Sinaloa), Mexico, in the period from 1940 to 1971. The von Mises distribution is fitted via numerical optimization with the de Rosenbrock algorithm and the ideal distribution of the Qm turned out to be the Kappa. The graph of joint return periods of the AND type of 50, 100 and 500 years was formed. In addition, conditional joint return periods of occurrence dates were estimated given that the Qm has the cited return periods. This allows estimates of the probability of exceedance of Qm in defined periods. The conclusions highlight the simplicity of these bivariate frequency analyses, by means of the Copula functions, and the practical importance of their predictions, according to the dates of occurrence.
References
Aldama, A. A. (2000). Hidrología de avenidas. Conferencia Enzo Levi 1998. Ingeniería Hidráulica en México, 15(3), 5-46.
Aldama, A. A., Ramírez, A. I., Aparicio, J., Mejía-Zermeño, R., & Ortega-Gil, G. E. (2006). Seguridad hidrológica de las presas en México. Jiutepec, México: Instituto Mexicano de Tecnología del Agua.
Bobée, B. (1975). The Log-Pearson type 3 distribution and its application to Hydrology. Water Resources Research, 11(5), 681-689. DOI: 10.1029/WR011i005p00681
Bobée, B., & Ashkar, F. (1991). Chapter 1: Data requirements for hydrologic frequency analysis. In: The Gamma Family and derived distributions applied in Hydrology (pp. 1-12). Littleton, USA: Water Resources Publications.
Burn, D. H. (1997). Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology, 202(1-4), 212-230. DOI: 10.1016/S0022-1694(97)00068-1
Campos-Aranda, D. F. (2003). Capítulo 7. Integración Numérica y Capítulo 9. Optimización numérica. En: Introducción a los métodos numéricos: software en Basic y aplicaciones en hidrología superficial (pp. 137-153, 172-211). San Luis Potosí, México: Editorial Universitaria Potosina.
Campos-Aranda, D. F. (2017). Definición de tres épocas de crecientes utilizando estadísticos direccionales. Tecnología y ciencias del agua, 8(1), 155-165.
Campos-Aranda, D. F. (2023a). Análisis de Frecuencias comparativo con momentos L entre la distribución Kappa y seis de aplicación generalizada. Tecnología y ciencias del agua, 14(1), 200-250. DOI: 10.24850/j-tyca-14-01-05
Campos-Aranda, D. F. (2023b). Caracterización probabilística de las fechas de ocurrencia de las crecientes anuales mediante la distribución de von Mises. Tecnología y ciencias del agua, 14(2), 204-260. DOI: 10.24850/j-tyca-14-02-06
Carta, J. A., Bueno, C., & Ramírez, P. (2008). Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy Conversion and Management, 49(5), 897-907. DOI: 10.1016/j.enconman.2007.10.017
Cunderlik, J. M., Ouarda, T. B. M. J., & Bobée, B. (2004). Determination of flood seasonality from hydrological records. Hydrological Sciences Journal, 49(3), 511-526. DOI: 10.1623/hysj.49.3.511.54351
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. DOI: 10.5194/gmd-7-1247-2014
Chen, L., Guo, S., Yan, B., Liu, P., & Fang, B. (2010). A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrological Sciences Journal, 55(8), 1264-1280. DOI: 10.1080/02626667.2010.520564
Chen, L., Singh, V. P., Guo, S., Fang, B., & Liu, P. (2013). A new method for identification of flood seasons using directional statistics. Hydrological Sciences Journal, 58(1), 28-40. DOI: 10.1080/02626667.2012.743661
Chen, L., & Guo, S. (2019). Chapter 3. Copula-based Flood Frequency Analysis and Chapter 4. Copula-based Seasonal Design Flood Estimation. In: Copulas and its application in Hydrology and Water Resources. (pp. 39-71, 73-96). Gateway East, Singapore: Springer.
Chowdhary, H., & Singh, V. P. (2019). Chapter 11. Multivariate frequency distributions in hydrology. In: Teegavarapu, R. S. V., Salas, J. D., & Stedinger, J. R. (eds.). Statistical analysis of hydrologic variables (pp. 407-489). Reston, USA: American Society of Civil Engineers.
Davis, P. J., & Polonsky, I. (1972). Chapter 25. Numerical interpolation, differentiation and integration. In: Abramowitz, M., & Stegun, I. A. (eds.). Handbook of mathematical functions (pp. 875-926) (9th print). New York, USA: Dover Publications.
Dupuis, D. J. (2007). Using copulas in hydrology: Benefits, cautions, and issues. Journal of Hydrologic Engineering, 12(4), 381-393. DOI: 10.1061/(ASCE)1084–0699(2007)12:4(381)
Durrans, S. R., Eiffe, M. A., Thomas Jr., W. O., & Goranflo, H. M. (2003). Joint seasonal/annual flood frequency analysis. Journal of Hydrologic Engineering, 8(4), 181-189. DOI: 10.1061/(ASCE)1084-0699(2003)8:4(181)
Escalante-Sandoval, C. A., & Reyes-Chávez, L. (2002). Capítulo 9. Análisis conjunto de eventos hidrológicos. En: Técnicas estadísticas en hidrología (pp. 203-246). Ciudad de México, México: Facultad de Ingeniería de la Universidad Nacional Autónoma de México.
Frahm, G., Junker, M., & Schmidt, R. (2005). Estimating the tail-dependence coefficient: Properties and pitfalls. Insurance: Mathematics and Economics, 37(1), 80-100. DOI: 10.1016/j-insmatheco.2005.05.008
Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about Copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347-368. DOI: 10.1061/(ASCE)1084-0699(2007)12:4(347)
Genest, C., & Chebana, F. (2017). Copula modeling in hydrologic frequency analysis (pp. 30.1-30.10) (2nd ed.). In: Singh, V. P. (ed.). Handbook of applied hydrology. New York, USA: McGraw-Hill Education.
Hosking, J. R., & Wallis, J. R. (1997). Appendix. L-moments for some specific distributions. In: Regional frequency analysis. An approach based on L-moments. (pp. 191-209). Cambridge, England: Cambridge University Press.
Khedun, C. P., Singh, V. P., & Byrd, A. R. (2019). Joint probability of extreme streamflow and its day of occurrence. Journal of Hydrologic Engineering, 24(8), 06019005:1-8. DOI: 10.1061/(ASCE)HE.1943-5584.0001813
Kite, G. W. (1977). Chapter 12. Comparison of frequency distributions. In: Frequency and risk analyses in hydrology (pp. 156-168). Fort Collins, USA: Water Resources Publications.
Kuester, J. L., & Mize, J. H. (1973). Chapter 9. Multivariable unconstrained methods. III. ROSENB algorithm. In: Optimization techniques with Fortran (pp. 320-330). New York, USA: McGraw-Hill Book Co.
Metcalfe, A. V. (1997). Theme 2.4.4. Vector variables and von Mises distribution. In: Statistics in Civil Engineering (pp. 31-32). London, England: Arnold Publishers.
Meylan, P., Favre, A. C., & Musy, A. (2012). Chapter 3. Selecting and checking data series and Theme 9.2. Multivariate Frequency Analysis using Copulas. In: Predictive hydrology. A frequency analysis approach (pp. 29-70, 164-176). Boca Raton, USA: CRC Press.
Nieves, A., & Domínguez, F. C. (1998). Sección 6.2. Cuadratura de Gauss. En: Métodos numéricos. Aplicados a la ingeniería (pp. 416-425). México, DF, México: Compañía Editorial Continental.
Olver, F. W. J. (1972). Chapter 9. Bessel Functions of Integer Order. In: Abramowitz, M., & Stegun, I. A. (eds.). Handbook of Mathematical Functions (pp. 355-436) (9th print.). New York, USA: Dover Publications.
Poulin, A., Huard, D., Favre, A. C., & Pugin, S. (2007). Importance of tail dependence in bivariate frequency analysis. Journal of Hydrologic Engineering, 12(4), 394-403. DOI: 10.1061/(ASCE)1084-0699(2007)12:4(394)
Ramírez-Orozco, A. I., Gutiérrez-López, A., & Ruiz-Silva, H. L. (2009). Análisis de la ocurrencia en el tiempo de los gastos máximos en México. Ingeniería Hidráulica en México, 24(1), 115-124.
Ramírez-Orozco, A. I. & Aldama, A. A. (2000). Capítulo 1. Teoría estadística y análisis de frecuencias conjunto. En: Análisis de frecuencias conjunto para estimación de avenidas de diseño (pp. 25-58). Avances en Hidráulica No. 7. México, DF, México: Asociación Mexicana de Hidráulica e Instituto Mexicano de Tecnología del Agua.
Rao, A. R., & Hamed, K. H. (2000). Chapter 1. Introduction. In: Flood frequency analysis (pp. 1-21). Boca Raton, USA: CRC Press.
Requena, A. I., Mediero, L., & Garrote, L. (2013). A bivariate return period based on copulas for hydrologic dam design: Accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences, 17(8), 3023-3038. DOI: 10.5194/hess-17-3023-2013
Rosenbrock, H. H. (1960). An automatic method of finding the greatest or least value of a function. Computer Journal, 3(3), 175-184.
Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Chapter 3. Bivariate analysis via Copulas; Appendix B. Dependence and Appendix C. Families of Copulas. In: Extremes in nature. An approach using Copulas (pp. 131-175, 219-232, 233-269). Dordrecht, The Netherlands: Springer.
Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2006). Bivariate frequency analysis of floods using Copulas. Journal of the American Water Resources Association, 42(6), 1549-1564.
Stegun, I. A. (1972). Chapter 27. Miscellaneous functions. In: Abramowitz, M., & Stegun, I. A. (eds.). Handbook of Mathematical Functions (pp. 997-1010) (9th print.). New York, USA: Dover Publications.
Vogel, R. M., & Castellarin, A. (2017). Risk, reliability, and return periods and hydrologic design. In: Singh, V. P. (ed.). Handbook of applied hydrology (pp. 78.1-78.10) (2nd ed.). New York, USA: McGraw-Hill Education.
Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506-1515. DOI: 10.1080/02626667.2012.726357
WRC, Water Resources Council. (1977). Guidelines for determining flood flow frequency (revised edition). Bulletin #17A of the Hydrology Committee. Washington, DC, USA: Water Resources Council.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. DOI: 10.3354/cr030079
Yue, S. (2000a). Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls. Hydrological Sciences Journal, 45(2), 315-326. DOI: 10.1080/02626660009492327
Yue, S. (2000b). The Gumbel mixed model applied to storm frequency analysis. Water Resources Management, 14(5), 377-389.
Yue, S., & Rasmussen, P. (2002). Bivariate frequency analysis: Discussion of some useful concepts in hydrological application. Hydrological Processes, 16(14), 2881-2898. DOI:10.1002/hyp.1185
Zhang, L. & Singh, V. P. (2006). Bivariate flood frequency analysis using the Copula method. Journal of Hydrologic Engineering, 11(2), 150-164. DOI: 10.1061/(ASCE)1084-0699(2006)11:2(150)
Zhang, L. & Singh, V. P. (2019). Chapter 3. Copulas and their properties. In: Copulas and their applications in water resources engineering (pp. 62-122). Cambridge, UK: Cambridge University Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.