Simple operational process for the flood frequencies analysis with partial duration series

Authors

DOI:

https://doi.org/10.24850/j-tyca-2025-03-07

Keywords:

Annual series of maximums, partial duration series, threshold values, Poisson-Pareto distribution, graph of average residual exceedances, dispersion index, predictions, relative error

Abstract

Through frequency analysis, the design floods (DF) are estimated, maximum river flows corresponding to low probabilities of being exceeded. With the DF, dikes and protection walls, bridges and urban drainage are hydrologically dimensioned. Frequency analysis generally processes the observed annual maximum flows or Annual Series of Maximums (SAM), but all flows that exceed a threshold value (vu) or Partial Duration Series (SDP) can also be processed, complying with the condition of being independent. The essential disadvantage of the SAM lies in considering only the maximum annual event, ignoring secondary values, which may exceed the maximums of other years. As the SDP is made up of a greater number of events, its predictions or DFs are more reliable. In this study, the SDP are integrated from the record of maximum monthly flows, adopting as the minimum vu x0, the lowest maximum annual flow, and as the maximum vu the one that defines as many excess flows as years of the SAM record. The adopted vu accepts, graphical and numerically, the Poisson-Pareto distribution and leads to the lowest standard error of fit for the analyzed SDP data. The suggested operational process is applied in five hydrometric stations in two hydrological regions of Mexico and concludes with the contrast of SAM and SDP predictions. Finally, conclusions are formulated, which highlight the simplicity of the process and the accuracy of its predictions.

References

Ashkar, F., & Ba, I. (2017). Selection between the generalized Pareto and kappa distributions in peaks-over-threshold hydrological frequency modelling. Hydrological Sciences Journal, 62(7), 1167-1180. DOI: 10.1080/02626667.2017.1302089

Bezak, N., Brilly, M., & Sraj, M. (2014). Comparison between the peak-over-threshold and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal, 59(5), 959-977. DOI: 10.1080/02626667.2013.831174

Bhunya, P. K., Singh, R. D., Berndtsson, R., & Panda, S. N. (2012). Flood analysis using generalized logistic models in partial duration series. Journal of Hydrology, 420-421, 59-71. DOI: 10.1016/j.jhydrol.2011.11.037

Bhunya, P. K., Mishra, S. K., Ojha, C. S. P., & Berndtsson, R. (2008). Chapter 17. Flood estimation in ungauged basins. In: Singh, V. P. (ed.). Hydrology and hydraulics (pp. 605-646). Highlands Ranch, USA: Water Resources Publications, LLC.

Bobée, B. (1975). The Log-Pearson type 3 distribution and its application to Hydrology. Water Resources Research, 11(5), 681-689. DOI: 10.1029/WR011i005p00681

Bobée, B., & Ashkar, F. (1991). Theme 1.1. Statistical criteria and tests. In: The Gamma Family and derived distributions applied in hydrology (pp. 1-9). Littleton, USA: Water Resources Publications.

Campos-Aranda, D. F. (2023). Capítulo 1. Datos locales: aumento y aceptación En: Temas recientes del análisis de frecuencias hidrológico (pp. 1-51). Jiutepec, México: Instituto Mexicano de Tecnología del Agua.

Campos-Aranda, D. F. (2018). Ponencia núm. 78. Análisis de frecuencia de datos hidrológicos extremos con persistencia o dependientes. XXV Congreso Nacional de Hidráulica 5 al 9 de noviembre, Ciudad de México, México.

Campos-Aranda, D. F. (2000). Descripción y aplicación del modelo Poisson-Pareto en el análisis de frecuencia de crecientes con series de duración parcial. Ingeniería. Investigación y Tecnología, 1(5), 199-207.

Campos-Aranda, D. F. (1996). Caracterización hidrológica de crecientes en la cuenca baja del río Pánuco con base en niveles máximos anuales. Ingeniería Hidráulica en México, 11(2), 15-31.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. DOI: 10.5194/gmd-7-1247-2014

Coles, S. (2001). Chapter 4. Threshold models. In: An introduction to statistical modeling of extreme values (pp. 74-91). London, England: Springer-Verlag.

Cunnane, C. (1979). A note on the Poisson assumption in partial duration series models. Water Resources Research, 15(2), 489-494. DOI: 10.1029/WR015i002p00489

Durocher, M., Burn, D. H., & Ashkar, F. (2019). Comparison of estimation methods for a nonstationary index-flood model in flood frequency analysis using peaks over threshold. Water Resources Research, 55(11), 9398-9416. DOI: 10.1029/2019WR025305

Eastoe, E., & Tawn, J. A. (2010). Statistical models for over dispersion in the frequency of peaks over threshold data for a flow series. Water Resources Research, 46(2), 1-12. DOI: 10.1029/2009WR007757

Fischer, S., & Schumann, A. (2016). Robust flood statistics: Comparison of peak over threshold approaches based on monthly maxima and TL-moments. Hydrological Sciences Journal, 61(3), 457-470. DOI: 10.1080/02626667.2015.1054391

Hosking, J. R., & Wallis, J. R. (1997). Appendix: L-moments for some specific distributions. In: Regional frequency analysis. An approach based on L-moments (pp. 191-209). Cambridge, England: Cambridge University Press.

IMTA, Instituto Mexicano de Tecnología del Agua. (2003). Banco Nacional de Datos de Aguas Superficiales (BANDAS). Hidrometría y Sedimentos hasta 2002 (8 CD). Jiutepec, México: Comisión Nacional del Agua, Secretaría de Medio Ambiente y Recursos Naturales, Instituto Mexicano de Tecnología del Agua.

Khaliq, M. N., Ouarda, T. B. M. J., Ondo, J. C., Gachon, P., & Bobée, B. (2006). Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology, 329(3-4), 534-552. DOI:10.1016/j.jhydrol.2006.03.004

Kite, G. W. (1977). Chapter 12. Comparison of frequency distributions. In: Frequency and risk analyses in hydrology (pp. 156-168). Fort Collins, USA: Water Resources Publications.

Lang, M., Ouarda, T. B. M. J., & Bobée, B. (1999). Towards operational guidelines for over-threshold modeling. Journal of Hydrology, 225(3-4), 103-117. DOI: 10.1016/S0022-1694(99)00167-5

Langbein, W. B. (1949). Annual floods and the partial-duration flood series. Transactions of the American Geophysical Union, 30(6), 879-881. DOI: 10.1029/TR030i006p00879

Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration series for modeling extreme hydrologic events. 1. At-site modeling. Water Resources Research, 33(4), 747-757. DOI: 10.1029/96WR03848

Madsen, H., Rosbjerg, D., & Harremoës, P. (1993). Application of the partial duration series approach in the analysis of extreme rainfalls. In: Extreme hydrological events: Precipitation, floods and droughts (pp. 257-266). Wallingford, England: IAHS Publication No. 213.

Metcalfe, A. V. (1997). Theme 4.5. Generalized Pareto distribution and peaks over threshold (POT) analysis. In: Statistics in Civil Engineering (pp. 94-98). London, England: Arnold Publishers.

Meylan, P., Favre, A. C., & Musy, A. (2012). Chapter 3. Selecting and checking data series and Theme 8.2.2. Peak over a threshold series. In: Predictive hydrology. A frequency analysis approach (pp. 29-70, 139-144). Boca Raton, USA: CRC Press.

Önöz, B., & Bayazit, M. (2001). Effect of the occurrence process of the peaks over threshold on the flood estimates. Journal of hydrology, 244(1-2), 86-96. DOI: 10.1016/S0022-1694(01)00330-4

Ostle, B., & Mensing, R. W. (1975). Appendix 4. Cumulative Chi-square distribution. In: Statistic in research (pp. 540-543) (3rd ed.). Ames, USA: The Iowa State University Press.

Pan, X., Rahman, A., Haddad, K., & Ouarda, T. B. M. J. (2022). Peaks-over-threshold model in flood frequency analysis: A scoping. Stochastic Environment Research and Risk Assessment, 36(9), 2419-2435. DOI: 10.1007/s0047/022-02174-6

Rao, A. R., & Hamed, K. H. (2000). Theme 1.8. Tests on hydrologic data. In: Flood frequency analysis (pp. 12-21). Boca Raton, USA: CRC Press.

Roth, M., Buishand, T. A., Jongbloed, G., Klein-Tank, A. M. G., & van Zanten, J. H. (2012). A regional peaks-over-threshold model in a nonstationary climate. Water Resources Research, 48(11), 1-12. DOI: 10.1029/20126WR012214

Shane, R. M., & Lynn, W. R. (1964). Mathematical model for flood risk evaluation. Journal of the Hydraulics Division, 90(HY6), 1-20.

Singh, V. P., & Zhang, L. (2017). Frequency distributions. In: Singh, V. P. (ed.). Handbook of applied hydrology (pp. 21.1-21.11) (2nd ed.). New York, USA: McGraw-Hill Education.

Solari, S., Egüen, M., Polo, M. J., & Losada, M. A. (2017). Peaks over threshold (POT): A methodology for automatic threshold estimation using goodness of fit p-value. Water Resources Research, 53(4), 2833-2849. DOI: 10.1002/2016WR019416

Solari, S., & Losada, M. A. (2012). A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method, Water Resources Research, 48(10), 1-15. DOI: 10.1029/2011WR011475

Stedinger, J. R. (2017). Flood frequency analysis. In: Singh, V. P. (ed.). Handbook of applied hydrology (pp. 76.1-76.8) (2nd ed.). New York, USA: McGraw-Hill Education.

Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993). Theme 18.6.1. Partial duration series. In: Maidment, D. R. (ed.). Handbook of hydrology (pp. 18.37-18.39). New York, USA: McGraw-Hill, Inc.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. DOI: 10.3354/cr030079

WRC, Water Resources Council. (1977). Guidelines for determining flood flow frequency (revised edition). Bulletin # 17A of the Hydrology Committee. Washington, DC, USA: Water Resources Council.

Published

2025-05-01

How to Cite

Campos-Aranda, D. F. (2025). Simple operational process for the flood frequencies analysis with partial duration series. Tecnología Y Ciencias Del Agua, 16(3), 265–332. https://doi.org/10.24850/j-tyca-2025-03-07

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>