Modelación del impacto del deshielo en lo caudales en la cuenca del lago Mansfield Hollow en Connecticut, EUA

Authors

DOI:

https://doi.org/10.24850/j-tyca-2025-05-08

Keywords:

Connecticut, deshielo, HEC-HMS, lago Mansfield Hollow, termodinámica

Abstract

Las predicciones de escorrentía son esenciales para minimizar los peligros de inundación y aumentar la resiliencia ante eventos climáticos extremos. En este estudio se realizó un análisis para simular la escorrentía del deshielo en la cuenca del lago Mansfield Hollow, que es un afluente de la cuenca del río Támesis en Connecticut, Nueva Inglaterra, EUA. El modelo HEC-HMS del Cuerpo de Ingenieros del Ejército de los Estados Unidos (USACE, por sus siglas en inglés) se aplicó para simular la escorrentía del deshielo durante el invierno-primavera de 2010 y 2019. La cuenca del lago Mansfield Hollow se compone de tres afluentes principales: Fenton, Mount Hope y Natchaug. Estas simulaciones de escorrentía y la respuesta de la cuenca al deshielo son cruciales para evaluar los impactos potenciales de las decisiones de manejo de la cuenca, particularmente durante los periodos de alto caudal. El modelo HEC-HMS fue calibrado durante el evento de 2010 y validado para los eventos de 2019. El estudio encontró que para las tormentas de nieve durante los eventos de 2010 y 2019, el modelo HEC-HMS proporcionó predicciones muy precisas de la escorrentía del deshielo con R2 y valores de correlación de Nash-Sutcliffe superiores a 0.76. Estos hallazgos resaltan la eficacia de los modelos HEC-HMS para simular la escorrentía del deshielo, y demuestran la utilidad de dicho modelo para predecir y gestionar los riesgos de inundación. Los resultados de este estudio brindan información valiosa sobre los impactos potenciales de la escorrentía del deshielo e informarán las futuras decisiones de gestión de cuencas hidrográficas en la cuenca del lago Mansfield Hollow y regiones similares.

References

Ahearn, E. A. (2008). Flow durations, low-flow frequencies, and monthly median flows for selected streams in Connecticut through 2005 (U.S. Geological Survey Scientific Investigations Report 2007-5270). DOI: 10.3133/sir20075270

Akossou, A. Y. J., & Palm, R. (2013). Impact of data structure on the estimators R-square and adjusted R-square in linear regression. International Journal of Mathematics & Computation, 20(3), 84-93. Recovered from https://www.researchgate.net/publication/289526309_Impact_of_data_structure_on_the_estimators_R-square_and_adjusted_R-square_in_linear_regression

Allard, W. (1957). Snow hydrology: Summary report of the snow investigations. Published by the North Pacific Division, Corps of Engineers, US Army, Portland, Oregon, 1956. 437 pages, 70 pages of plates, maps and figs., 27 cm. Journal of Glaciology, 3(22), 148-148. DOI: 10.3189/S0022143000024503

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 623. DOI: 10.7717/peerj-cs.623

Da Silva, M. G., De-Aguiar-Netto, A. D. O., De-Jesus-Neves, R. J., Do Vasco, A. N., Almeida, C., & Faccioli, G. G. (2015). Sensitivity analysis and calibration of hydrological modelling of the watershed Northeast Brazil. Journal of Environmental Protection, 6(08), 837. DOI: 10.4236/jep.2015.68076

Hu, H. H., Kreymborg, L. R., Doeing, B. J., Baron, K. S., & Jutila, S. A. (2006). Gridded snowmelt and rainfall-runoff CWMS hydrologic modelling of the Red River of the North Basin. Journal of Hydrologic Engineering, 11(2), 91-100. DOI: 10.1061/(ASCE)1084-0699(2006)11:2(91)

Kattelmann, R. (1997). Flooding from rain-on-snow events in the Sierra Nevada. IAHS Publications-Series of Proceedings and Reports- International Association of Hydrological Sciences, 239, 59-66. Recovered from https://books.google.com.sa/books?hl=en&lr=&id=8nbLGQw5fckC&oi=fnd&pg=PA59&dq=Flooding+from+rain-on-snow+events+in+the+Sierra+Nevada.+IAHS+Publications-Series+of+Proceedings+and+Reports-Intern+Assoc+Hydrological+Sciences,+239,+59-66&ots=Nkt4IfEcMf&sig=-utCekNetrv8nyKuYJ9C67LuURY&redir_esc=y#v=onepage&q&f=false

Miller, D. R., Warner, G. S., Ogden, F. L., & DeGaetano, A. T. (2002). Precipitation in Connecticut. Recovered from https://digitalcommons.lib.uconn.edu/cgi/viewcontent.cgi?article=1035&context=ctiwr_specreports

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1 –A discussion of principles. Journal of Hydrology, 10, 282-290. DOI: 10.1016/0022-1694(70)90255-6

NLCD, National Land Cover Database. (2022). Multi-Resolution Land Characteristics (MRLC) Consortium. Recovered from www.mrlc.gov

USDA, United States Department of Agriculture. (2022). Web Soil Survey. Recovered from http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

NOAA, National Oceanic and Atmospheric Administration. (2022). Map. Recovered from https://water.noaa.gov/map#forecast-chart

NSIDC, National Snow and Ice Data Center. (2022). Homepage. Recovered from https://nsidc.org/home

PRISM©, Climate Group, Oregon State University. (2022). PRISM Weather Data. Recovered from https://prism.oregonstate.edu

Sarmad, M., Zaman, M., Tasawar, M., Imran, M., Zahra, S. M., Azam, S., & Shah, I. (2022). Impacts of ice-melt on hydrological simulation of upper Indus Basin. 2nd International Conference on Hydrology and Water, Lahore, Pakistan. Recovered from https://www.researchgate.net/publication/363884520_Impacts_of_Ice-Melt_on_Hydrological_Simulation_of_Upper_Indus_Basin

Scharffenberg, W., Ely, P., Daly, S., Fleming, M., & Pak, J. (June, 2010), June. Hydrologic modelling system (HEC-HMS): Physically based simulation components. In: 2nd Joint Federal Interagency Conference, 27, 1-8. Recovered from https://www.semanticscholar.org/paper/HYDROLOGIC-MODELING-SYSTEM-(HEC-HMS)%3A-SIMULATION-Scharffenberg-Ely/35415a4f0b506d453792558dc26ba192d22e8cba

Şengül, S., & İspirli, M. N. (2022). Predicting snowmelt runoff at the source of the mountainous Euphrates River Basin in Turkey for water supply and flood control issues using HEC-HMS modelling. Water, 14(3), 284. DOI: 10.3390/w14030284

Stella, J. M. (2013). Mathematical model for the prediction of recession curves. Revista de la Asociación Geológica Argentina, 70(2), 229-237. Recovered from http://www.scielo.org.ar/scielo.php?pid=S0004-48222013000200007&script=sci_arttext&tlng=pt

Stella, J. M. (2021). Applying Weibull distribution and low flow frequency curves for minimum flow prediction in an ungagged stream in Connecticut, New England. Global Scientific Research in Environmental Science, 1(4), 1-9. DOI: 10.53902/GSRES.2021.01.000520

Stella, J. M. (2022). Mapping floods of Fenton River, an ungauged stream in Connecticut. Journal of Water Resource and Protection, 14(7), 531-541. DOI: 10.4236/jwarp.2022.147028

Teng, F., Huang, W., & Ginis, I. (2018). Hydrological modelling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards, 91, 179-199. DOI: 10.1007/s11069-017-3121-y

USACE, US Army Corps of Engineers. (2019). Mansfield Hollow Lake Master Plan. Recovered from https://www.nae.usace.army.mil/Missions/Recreation/Mansfield-Hollow-Lake/

USACE, US Army Corp of Engineers. (2022a). NAE Reservoir Regulation Section. Recovered from https://reservoircontrol.usace.army.mil/nae_ords/cwmsweb/cwms_web.cwmsweb.cwmsindex

USACE, US Army Corp of Engineers. (2022b). HEC-HMs User’s Manual. Recovered from https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/latest/subbasin-elements/selecting-a-snowmelt-method

USDA, Soil Survey Geographic Database. (2022). Web Soil Survey. Recovered from http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

USGS, United States Geological Survey. (2022a). Fenton River. Recovered from https://waterdata.usgs.gov/nwis/uv?site_no=01121330&legacy=1

USGS, United States Geological Survey. (2022b). Mount Hope River. Recovered from https://waterdata.usgs.gov/nwis/uv?site_no=01121000&legacy=1

USGS, United States Geological Survey. (2022c). Natchaug River. Recovered from https://waterdata.usgs.gov/nwis/uv?site_no=01120790&legacy=1

USGS, United States Geological Survey. (2022d). Mansfield Hollow Lake at Mansfield Hollow, CT-01121500. Recovered from https://waterdata.usgs.gov/monitoring-location/01121500/#period=P1Y&showMedian=true

Verdhen, A., Chahar, B. R., & Sharma, O. P. (2013). Snowmelt runoff simulation using HEC-HMS in a Himalayan watershed. In: World environmental and water resources congress: Showcasing the future (pp. 3206-3215). DOI: 10.1061/9780784412947.317

Downloads

Published

2025-09-01

How to Cite

Stella, J. M. (2025). Modelación del impacto del deshielo en lo caudales en la cuenca del lago Mansfield Hollow en Connecticut, EUA. Tecnología Y Ciencias Del Agua, 16(5), 310–356. https://doi.org/10.24850/j-tyca-2025-05-08