Modelling the impact of snowmelt in flows in the Mansfield Hollow Lake Watershed in Connecticut, USA
DOI:
https://doi.org/10.24850/j-tyca-2025-05-08Palabras clave:
Connecticut, HEC-HMS, Mansfield Hollow Lake, snowmelt, thermodynamicsResumen
Storm runoff predictions are essential for minimizing flood hazards and increasing resilience to extreme weather events. In this study, an analysis was conducted to simulate snowmelt runoff in the Mansfield Hollow Lake Watershed, which is a tributary of the Thames River watershed in Connecticut, New England. The United States Army Corp of Engineers (USACE) model HEC-HMS was applied to simulate snowmelt runoff during the winter-spring of 2010 and 2019. The Mansfield Hollow Lake Watershed is composed of three main tributaries, namely the Fenton, Mount Hope, and Natchaug rivers. These runoff simulations and the watershed response to snowmelt are crucial for evaluating the potential impacts of watershed management decisions, particularly during high-flow periods. The HEC-HMS model was calibrated during the 2010 event and validated for the 2019 events. The study found that for the snow storms during 2010 and 2019 events, HEC-HMS model provided highly accurate predictions of snowmelt runoff with R-squared and, Nash-Sutcliffe correlation values exceeding 0.76. These findings highlight the efficacy of HEC-HMS model for simulating snowmelt runoff and demonstrate the utility of such model in predicting and managing flood risks. The results of this study provide valuable insights into the potential impacts of snowmelt runoff and will inform future watershed management decisions in the Mansfield Hollow Lake Watershed and similar regions.
Citas
Ahearn, E. A. (2008). Flow durations, low-flow frequencies, and monthly median flows for selected streams in Connecticut through 2005 (U.S. Geological Survey Scientific Investigations Report 2007-5270). DOI: 10.3133/sir20075270
Akossou, A. Y. J., & Palm, R. (2013). Impact of data structure on the estimators R-square and adjusted R-square in linear regression. International Journal of Mathematics & Computation, 20(3), 84-93. Recovered from https://www.researchgate.net/publication/289526309_Impact_of_data_structure_on_the_estimators_R-square_and_adjusted_R-square_in_linear_regression
Allard, W. (1957). Snow hydrology: Summary report of the snow investigations. Published by the North Pacific Division, Corps of Engineers, US Army, Portland, Oregon, 1956. 437 pages, 70 pages of plates, maps and figs., 27 cm. Journal of Glaciology, 3(22), 148-148. DOI: 10.3189/S0022143000024503
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 623. DOI: 10.7717/peerj-cs.623
Da Silva, M. G., De-Aguiar-Netto, A. D. O., De-Jesus-Neves, R. J., Do Vasco, A. N., Almeida, C., & Faccioli, G. G. (2015). Sensitivity analysis and calibration of hydrological modelling of the watershed Northeast Brazil. Journal of Environmental Protection, 6(08), 837. DOI: 10.4236/jep.2015.68076
Hu, H. H., Kreymborg, L. R., Doeing, B. J., Baron, K. S., & Jutila, S. A. (2006). Gridded snowmelt and rainfall-runoff CWMS hydrologic modelling of the Red River of the North Basin. Journal of Hydrologic Engineering, 11(2), 91-100. DOI: 10.1061/(ASCE)1084-0699(2006)11:2(91)
Kattelmann, R. (1997). Flooding from rain-on-snow events in the Sierra Nevada. IAHS Publications-Series of Proceedings and Reports- International Association of Hydrological Sciences, 239, 59-66. Recovered from https://books.google.com.sa/books?hl=en&lr=&id=8nbLGQw5fckC&oi=fnd&pg=PA59&dq=Flooding+from+rain-on-snow+events+in+the+Sierra+Nevada.+IAHS+Publications-Series+of+Proceedings+and+Reports-Intern+Assoc+Hydrological+Sciences,+239,+59-66&ots=Nkt4IfEcMf&sig=-utCekNetrv8nyKuYJ9C67LuURY&redir_esc=y#v=onepage&q&f=false
Miller, D. R., Warner, G. S., Ogden, F. L., & DeGaetano, A. T. (2002). Precipitation in Connecticut. Recovered from https://digitalcommons.lib.uconn.edu/cgi/viewcontent.cgi?article=1035&context=ctiwr_specreports
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1 –A discussion of principles. Journal of Hydrology, 10, 282-290. DOI: 10.1016/0022-1694(70)90255-6
NLCD, National Land Cover Database. (2022). Multi-Resolution Land Characteristics (MRLC) Consortium. Recovered from www.mrlc.gov
USDA, United States Department of Agriculture. (2022). Web Soil Survey. Recovered from http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
NOAA, National Oceanic and Atmospheric Administration. (2022). Map. Recovered from https://water.noaa.gov/map#forecast-chart
NSIDC, National Snow and Ice Data Center. (2022). Homepage. Recovered from https://nsidc.org/home
PRISM©, Climate Group, Oregon State University. (2022). PRISM Weather Data. Recovered from https://prism.oregonstate.edu
Sarmad, M., Zaman, M., Tasawar, M., Imran, M., Zahra, S. M., Azam, S., & Shah, I. (2022). Impacts of ice-melt on hydrological simulation of upper Indus Basin. 2nd International Conference on Hydrology and Water, Lahore, Pakistan. Recovered from https://www.researchgate.net/publication/363884520_Impacts_of_Ice-Melt_on_Hydrological_Simulation_of_Upper_Indus_Basin
Scharffenberg, W., Ely, P., Daly, S., Fleming, M., & Pak, J. (June, 2010), June. Hydrologic modelling system (HEC-HMS): Physically based simulation components. In: 2nd Joint Federal Interagency Conference, 27, 1-8. Recovered from https://www.semanticscholar.org/paper/HYDROLOGIC-MODELING-SYSTEM-(HEC-HMS)%3A-SIMULATION-Scharffenberg-Ely/35415a4f0b506d453792558dc26ba192d22e8cba
Şengül, S., & İspirli, M. N. (2022). Predicting snowmelt runoff at the source of the mountainous Euphrates River Basin in Turkey for water supply and flood control issues using HEC-HMS modelling. Water, 14(3), 284. DOI: 10.3390/w14030284
Stella, J. M. (2013). Mathematical model for the prediction of recession curves. Revista de la Asociación Geológica Argentina, 70(2), 229-237. Recovered from http://www.scielo.org.ar/scielo.php?pid=S0004-48222013000200007&script=sci_arttext&tlng=pt
Stella, J. M. (2021). Applying Weibull distribution and low flow frequency curves for minimum flow prediction in an ungagged stream in Connecticut, New England. Global Scientific Research in Environmental Science, 1(4), 1-9. DOI: 10.53902/GSRES.2021.01.000520
Stella, J. M. (2022). Mapping floods of Fenton River, an ungauged stream in Connecticut. Journal of Water Resource and Protection, 14(7), 531-541. DOI: 10.4236/jwarp.2022.147028
Teng, F., Huang, W., & Ginis, I. (2018). Hydrological modelling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards, 91, 179-199. DOI: 10.1007/s11069-017-3121-y
USACE, US Army Corps of Engineers. (2019). Mansfield Hollow Lake Master Plan. Recovered from https://www.nae.usace.army.mil/Missions/Recreation/Mansfield-Hollow-Lake/
USACE, US Army Corp of Engineers. (2022a). NAE Reservoir Regulation Section. Recovered from https://reservoircontrol.usace.army.mil/nae_ords/cwmsweb/cwms_web.cwmsweb.cwmsindex
USACE, US Army Corp of Engineers. (2022b). HEC-HMs User’s Manual. Recovered from https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/latest/subbasin-elements/selecting-a-snowmelt-method
USDA, Soil Survey Geographic Database. (2022). Web Soil Survey. Recovered from http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
USGS, United States Geological Survey. (2022a). Fenton River. Recovered from https://waterdata.usgs.gov/nwis/uv?site_no=01121330&legacy=1
USGS, United States Geological Survey. (2022b). Mount Hope River. Recovered from https://waterdata.usgs.gov/nwis/uv?site_no=01121000&legacy=1
USGS, United States Geological Survey. (2022c). Natchaug River. Recovered from https://waterdata.usgs.gov/nwis/uv?site_no=01120790&legacy=1
USGS, United States Geological Survey. (2022d). Mansfield Hollow Lake at Mansfield Hollow, CT-01121500. Recovered from https://waterdata.usgs.gov/monitoring-location/01121500/#period=P1Y&showMedian=true
Verdhen, A., Chahar, B. R., & Sharma, O. P. (2013). Snowmelt runoff simulation using HEC-HMS in a Himalayan watershed. In: World environmental and water resources congress: Showcasing the future (pp. 3206-3215). DOI: 10.1061/9780784412947.317
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial