Joint frequency analysis of peak flow and volumes of floods with Gumbel marginals
DOI:
https://doi.org/10.24850/j-tyca-14-03-01Keywords:
Design floods, bivariate Gumbel distributions, conditional distributions of the Logistic model, joint empirical probabilities, validation of the Logistic model, hybrid univariate return periods, joint return periodsAbstract
For two decades, the estimation of Design Floods of reservoirs has been addressed with the simplest multivariate approach, the bivariate. This has been accepted because it was proven that the reservoirs are not time sensitive to maximum flow, moreover, that such flow and volume are correlated with each other and the latter, with the total duration of the flood hydrograph. In this study, the bivariate Gumbel distribution or Logistics model was adjusted to the 61 annual data of peak flow and volume of floods entering the Adolfo Ruiz Cortines (Mocúzari) dam in the Río Mayo of the state of Sonora, Mexico. This process comprehends the following eight stages: (1) selection and testing of records to be processed; (2) verification of the randomness of the annual records; (3) acceptance of Gumbel marginal functions; (4) estimation of the joint empirical probabilities; (5) validation of the Logistic model; (6) verification of probability constraints; (7) estimation of design events, peak flow and volume, hybrid univariates, and (8) estimation of joint design events. In stage 1, first a subjective selection is made and then it is verified with the PPCC Test. Stage 2 is carried out based on the Wald-Wolfowitz Test. Stages 3 and 5 use the Kolmogórov-Smirnov Test. In stage 7, design flows are defined, and volumes are obtained by regression and conditional probability. In contrast, in stage 8, several peak flow and volume events are obtained, belonging to the subgroup of critical pairs, in the graphs of the joint return period T'(Q,V). Towards the last part of this work, conclusions are formulated, which highlight the advantages of the bivariate joint frequency analysis and the simplicity of application and testing of the Logistic model.
References
Aldama, A. A. (2000). Hidrología de avenidas. Conferencia Enzo Levi 1998. Ingeniería Hidráulica en México, 15(3), 5-46.
Aldama, A. A., Ramírez, A. I., Aparicio, J., Mejía-Zermeño, R., & Ortega-Gil, G. E. (2006). Seguridad hidrológica de las presas en México. Jiutepec, México: Instituto Mexicano de Tecnología del Agua.
Anderson, R L. (1942). Distribution of the serial correlation coefficient. The Annals of Mathematical Statistics, 13(1), 1-13. DOI: 10.1214/aoms/1177731638
Bobée, B., & Ashkar, F. (1991). Chapter 1. Data requirements for hydrologic frequency analysis. In: The Gamma Family and derived distributions applied in Hydrology (pp. 1-12). Littleton, USA: Water Resources Publications.
Campos-Aranda, D. F. (2003). Capítulo 5. Ajuste de curvas. En: Introducción a los métodos numéricos: software en Basic y aplicaciones en hidrología superficial (pp. 93-127). San Luis Potosí, México: Editorial Universitaria Potosina.
Campos-Aranda, D. F. (2008). Procedimiento para revisión (sin hidrometría) de la seguridad hidrológica de presas pequeñas para riego. Agrociencia, 42(5), 551-563.
Chow, V. T. (1964). Statistical and probability analysis of hydrologic data. Section 8-I: Frequency analysis (pp. 8.1-8.42). In: Chow, V. T. (ed.). Handbook of applied hydrology. New York, USA: McGraw-Hill Book Co.
Domínguez, R., & Arganis, M. L. (2012). Validation of method to estimate design discharge flow for dam spillways with large regulating capacity. Hydrological Sciences Journal, 57(3), 460-478. DOI: 10.1080/02626667.2012.665993
Escalante-Sandoval, C. A., & Reyes-Chávez, L. (2002). Capítulo 9. Análisis conjunto de eventos hidrológicos. En: Técnicas estadísticas en hidrología (pp. 203-246). México, DF, México: Facultad de Ingeniería, Universidad Nacional Autónoma de México.
Escalante-Sandoval, C. A. (2005). Análisis de eficiencia de la distribución Bi-Gumbel. Ingeniería. Investigación y Tecnología, 6(1), 13-17.
Goel, N. K., Seth, S. M., & Chandra, S. (1998). Multivariate modeling of flood flows. Journal of Hydraulic Engineering, 124(2), 146-155.
Gräler, B., Van-den-Berg, M. J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De-Baets, B., & Verhoest, N. E. C. (2013). Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17(4), 1281-1296. DOI: 10.5194/hess-17-1281-2013
Hosking, J. R., & Wallis, J. R. (1997). Appendix: L-moments for some specific distributions. In: Regional frequency analysis. An approach based on L-moments (pp. 191-209). Cambridge, UK: Cambridge University Press.
Kite, G. W. (1977). Chapter 8. Type I extreme distribution and Chapter 12. Comparison of frequency distributions In: Frequency and risk analyses in hydrology (pp. 87-104, 156-168). Fort Collins, USA: Water Resources Publications.
Meylan, P., Favre, A. C., & Musy, A. (2012). Chapter 3. Selecting and checking data series. In: Predictive hydrology. A frequency analysis approach (pp. 29-70). Boca Raton, USA: CRC Press.
Ramírez-Orozco, A. I., & Aldama, A. A. (2000). Capítulo 1. Teoría estadística y análisis de frecuencias conjunto. En: Análisis de frecuencias conjunto para estimación de avenidas de diseño (pp. 25-58). Avances en Hidráulica No. 7. México, DF, México: Asociación Mexicana de Hidráulica-Instituto Mexicano de Tecnología del Agua.
Rao, A. R., & Hamed, K. H. (2000). Theme 1.8. Tests on hydrologic data (pp. 12-21) and Theme 7.2. The Extreme Value type I EV(1) distribution. In: Flood frequency analysis (pp. 229-241). Boca Raton, USA: CRC Press.
Requena, A. I., Mediero, L., & Garrote, L. (2013). A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences, 17(8), 3023-3038. DOI: 10.5194/hess-17-3023-2013
Salas, J. D., Obeysekera, J., & Vogel, R. M. (2018). Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrological Sciences Journal, 63(3), 325-352. DOI: 10.1080/02626667.2018.1426858
Serinaldi, F., & Grimaldi, S. (2011). Synthetic design hydrographs based on distribution functions with finite support. Journal of Hydrologic Engineering, 16(5), 434-446. DOI: 10.1061/(ASCE)HE.1943-5584.0000339
Shiau, J. T. (2003). Return period of bivariate distributed extreme hydrological events. Stochastic Environmental Research and Risk Assessment, 17(1-2), 42-57. DOI: 10.1007/s00477-003-0125-9
Stedinger, J. R. (2017). Flood frequency analysis. In: Singh, V. P. (ed.). Handbook of applied hydrology (2nd ed.) (pp. 76.1-76.8). New York, USA: McGraw-Hill Education.
Stedinger, J. R., Vogel, R. M., & Foufoula-Georgiou, E. (1993). Chapter 18. Frequency Analysis of Extreme Events. In: Maidment, D. R. (ed.). Handbook of hydrology (pp. 18.1-18.66). New York, USA: McGraw-Hill, Inc.
Vogel, R. M. (1986). The probability plot correlation coefficient test for Normal, lognormal and Gumbel distributional hypotheses. Water Resources Research, 22(4), 587-590.
Vogel, R. M., & Castellarin, A. (2017). Risk, reliability, and return periods and hydrologic design. In: Singh, V. P. (ed.). Handbook of applied hydrology (2nd ed.) (pp. 78.1-78.10). New York, USA: McGraw-Hill Education.
Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506-1515. DOI: 10.1080/02626667.2012.726357
Wald, A. & Wolfowitz, J. (1943). An exact test for randomnesss in the non–parametric case based on serial correlation coefficient. The Annals of Mathematical Statistics, 14(4), 378–388. DOI: 10.1214/aoms/1177731358
Yue, S. (1999). Applying bivariate Normal distribution to flood frequency analysis. Water International, 24(3), 248-254.
Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., & Bruneau, P. (1999). The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226(1-2), 88-100.
Yue, S. (2000a). Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls. Hydrological Sciences Journal, 45(2), 315-326. DOI: 10.1080/02626660009492327
Yue, S. (2000b). The Gumbel mixed model applied to storm frequency analysis. Water Resources Management, 14(5), 377-389.
Yue, S. (2000c). The bivariate lognormal distribution to model a multivariate flood episode. Hydrological Processes, 14(14), 2575-2588.
Yue, S., & Rasmussen, P. (2002). Bivariate frequency analysis: Discussion of some useful concepts in hydrological application. Hydrological Processes, 16(14), 2881-2898. DOI: 10.1002/HYP.1185
Yue, S., & Wang, C. Y. (2004). A comparison of two bivariate extreme value distributions. Stochastic Environmental Research and Risk Assessment, 18(2), 61-66. DOI: 10.1007/s00477-003-0124-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.