Sensitivity of drought indices depending on the length of climatological records
DOI:
https://doi.org/10.24850/j-tyca-2025-06-09Keywords:
Uncertainty due to drought, estimation error, meteorological drought indices, precipitation, evapotranspiration, probabilistic analysisAbstract
Among the various drought estimators proposed worldwide, there is not enough evaluation as to which of them presents the least uncertainty when applied in a region. Some indices have been used in territories with specific geomorphology and climatic regimes, as well as certain availability of meteorological information. Generally, there are short time series of the required meteorological variables, ignoring the drought estimation error associated with that length of series. This work presents a facilitating process to evaluate the sensitivity of meteorological drought indices based on the available information. Sensitivity was classified as excellent, good, medium and poor, according to the estimation error of the indices with respect to synthetic series of one thousand years. The synthetic series were generated from the characteristics of the real sample and the normal and gamma distribution functions. The results identified that the CPI, PNI, RDI, SPI, SPEI and ZI indices are not very sensitive to the extent of meteorological records. In particular, SPEI is no longer sensitive above 10-year record periods; CPI, PNI, RDI, SPI and ZI for 20 years. The EDI was more sensitive to the length of the series and required records of more than 30 years to improve its certainty. Finally, the reliability of the indices was greater for the daily synthetic series of P, Tmax and Tmin generated with the normal distribution function, as well as in areas with higher annual P.
References
Aburrea, J., & Cebrián, A. (2002). Distribución de la sequía más severa en un intervalo de tiempo dado.En: El agua y el clima (pp. 125-134). España: Publicaciones de la Sociedad Española de Climatología Recuperado de http://hdl.handle.net/20.500.11765/9123
Arrojo, A. (2008). Prevenir las sequías desde la planificación en perspectivas de cambio climático. Revista Ambienta, (78), 34-40.
Bayazit, M., & Önöz, B. (2005). Probabilities and return periods of multisite droughts. Hidrological Sciences-Journal-Des Sciences Hydrologiques, 50(4), 605-615. DOI: 10.1623/hysj.2005.50.4.605
Bayissa, Y. A., Moges, S. A., Xuan, Y., Van Andel, S. J., Maskey, S., Solomatine, D. P., Van Griensven, A., & Tadesse, T. (2015). Spatio-temporal assessment of meteorological drought under the influence of varying record length: The case of Upper Blue Nile Basin, Ethiopia. Hydrological Sciences Journal, 60(11), 1927-1942. DOI: 10.1080/02626667.2015.1032291
Bhalme, H. N., & Mooley, D. A. (1980). Large-scale drought/floods and monsoon circulation. Monthly Weather Review, 108, 1179-1211. DOI: 10.1175/1520-0493(1980)108<1197:LSDAMC>2.0.CO;2
Birkel, D. C. (2006). Sequía hidrológica en Costa Rica ¿Se han vuelto más severas y frecuentes en los últimos años? Revista Reflexiones, 85(1-2), 107-116.
Bordi, I., & Sutera, A. (2002). An analysis of drought in Italy in the last fifty years. Società Italiana Di Fisica. Il Nuovo Cimento, 25, 185-206.
Byun, H., & Wilhite, D. (1999). Objective quantification of drought severity and duration. Journal of Climate, 12, 2747-2756. DOI: 10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
Campos-Aranda, D. F. (2007). Estimación y aprovechamiento del escurrimiento. San Luis Potosí, México: Instituto de Ingeniería, Universidad Nacional Autónoma de México.
Cancelliere, A., Di Mauro, G., Bonaccorso, B., & Rossi, G. (2005). Stochastic forecasting of standarized precipitation index. XXXI IAHR Congress (pp. 3252-3260), Seoul, Korea.
Castillo-Castillo, M., Ibáñez-Castillo, L. A., Valdés, J. B., Arteaga-Ramírez, R., & Vázquez-Peña, M. A. (2017). Análisis de sequías meteorológicas en la cuenca del río Fuerte, México. Tecnología y ciencias del agua, 8(1), 35-52. DOI: 10.24850/j-tyca-2017-01-03
Chow, V. T., Maidment, D. R., & Mays, L. W. (1994). Applied hydrology. Singapore: McGraw-Hill Inc.
Crespo, P. G. (2006). Comparación de dos metodologías para el cálculo del índice de severidad de sequía para doce reservas de la biósfera mexicana. Montecillo, México: Colegio de Posgraduados.
Da Silva, B. L. G., Silva, B. C. P., Póvoas, C. E., & Ramos, A. (2023). Estimativa da evapotranspiração de referência por três métodos, para a região de Ilhéus/BA. Research, Society and Development, 12(4), e7812440936. DOI: 10.33448/rsd-v12i4.40936
Escalante, S., & Reyes, C. L. (2005). Análisis de sequías. Volumen I y volumen II. Ciudad de México, México: Facultad de Ingeniería, Universidad Nacional Autónoma de México.
Fernández, H. W., & Buscemi, N. H. (2000). Análisis y caracterización de sequías hidrológicas en el Centro Oeste de Argentina. Proceedings of the XVIII Congreso Nacional del Agua (Conagua). Santiago del Estero, Argentina: Universidad Nacional de Santiago del Estero, Termas de Río Hondo.
Fernández-Larrañaga, B. (1997). Identificación y caracterización de sequías hidrológicas en Chile central. Ingeniería del Agua, 4(4), 37-46. DOI:10.4995/ia.1997.2734
Gibbs, W. J., & Maher, J. V. (1967). Rainfall deciles as drought indicators. In: Bureau of Meteorology Bulletin 48. Melbourne, Australia: Bureau of Meteorology.
González, P. J. (2005). Caracterización estocástica de la realización espacio-temporal de eventos hidrológicos extremos de sequías (tesis de grado). Valencia, España: Universidad Politécnica de Valencia.
Hallack-Alegria, M., & Watkins, D. J. (2006). Annual and warm season drought intensity-duration-frequency: Analysis of Sonora, México. Journal of Climate, 20(9), 1-44. DOI: 10.1175/JCLI4101.1
INEGI, Instituto Nacional de Estadística y Geografía. (2020). INEGI. Recuperado de https://www.inegi.org.mx/
Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: An evaluation of drought indices. American Meteorological Society, 83(8), 1167-1180. DOI: 10.1175/1520-0477-83.8.1167
Link, R., Wild, T. B., Snyder, A. C., Hejazi, M. I., & Vernon, C. R. (2020). 100 years of data is not enough to establish reliable drought thresholds. Journal of Hydrology X, 7, 100052. DOI: 10.1016/j.hydroa.2020.100052
Linsley, R., Kholer, M., & Paulhus, J. L. H. (1988). Hidrología para ingenieros (2a ed.). Cali, Colombia: McGraw‐Hill.
Mahmoudi, P., Rigi, A., & Kamak, M. M. (2019). Evaluating the sensitivity of precipitation-based drought indices to different lengths of record. Journal of Hydrology, 579, 124181. DOI: 10.1016/j.jhydrol.2019.124181
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology, January 17-22, Anaheim, California, USA.
Moneo, M. (2008). Drought and climate change impacts on water resources: Management alternatives (tesis doctoral). Valencia, España: Universidad Politécnica de Madrid. DOI: 10.20868/UPM.thesis.1222
Nadarajah, S., & Gupta, A. K. (2006). Distribución Gamma bivariada de Cherian como un modelo para datos de sequía. Revista Agrociencia, 40(4), 483-490.
OMM, Organización Meteorológica Mundial. (2016). Programa de gestión integrada de sequías. Serie 2 de herramientas y directrices para la gestión integrada de sequías. En: Svoboda, M., & Fuchs, B. A. (eds.), Manual de indicadores e índices de sequía. Ginebra, Suiza: OMM. Recuperado de https://www.droughtmanagement.info/literature/WMO-GWP_Manual-de-indicadores_2016.pdf
Peña-Gallardo, M., Gámiz-Fortis, S. R., Castro-Díez, Y., & Esteban-Parra, M. J. (2016). Análisis comparativo de índices de sequía en Andalucía para el periodo 1901-2012. Cuadernos de Investigación Geográfica, 42(1), 67-88. DOI: 10.18172/cig.2946
Penalba, O. C., & Rivera, J. A. (2015). Comparación de seis índices para el monitoreo de sequías meteorológicas en el sur de Sudamérica. Centro Argentino de Meteorólogos, 40(2), 33-57.
PNUD, Programa de las Naciones Unidas para el Desarrollo. (2004). La reducción de riesgos de desastres: un desafío para el desarrollo. Recuperado de http://www.undp.org/content/undp/es/home/librarypage/crisis-prevention-and-recovery/reduction_risques_catastrophes.html
Ross, S. M. (1985). Introduction to probability models (3rd ed.). Cambridge, USA: Academic Press.
Sirdaş, S., & Şen, Z. (2003). Spatio-temporal drought analysis in the Trakya region, Turkey. Hydrological Sciences Journal, 48(5), 809-820. DOI: 10.1623/hysj.48.5.809.51458
SMN, Servicio Meteorológico Nacional. (2012). Normales climatológicas por estación. Recuperado de http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=42&Itemid=75
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35, 4027-4040. DOI: 10.1002/joc.4267
Tsakiris, G., & Vangelis, H. (2005). Establishing a drought index incorporating evapotranspiration. European Water, 9(10), 3-11.
Vicente-Serrano, S., Berguería, S., & López-Moreno, J. (2010). A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index-SPEI. Journal of Climate, 23(7), 1696-1718. DOI: 10.1175/2009JCLI2909.1
Vicente-Serrano, S., Berguería, S., Lorenzo-Lacruz, J., Camarero, J., López-Moreno, J., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1-27. DOI: 10.1175/2012EI000434.1
Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect of the length of record on the standardized precipitation index calculation. International Journal of Clitatology, 25, 505-520. DOI: 10.1002/joc.1142
Yahiaoui, A., Tauaîba, B., & Bouvier, C. (2009). Frequency analysis of the hydrological drought regime. Case of oued Mina catchment in western of Algeria. Revue Nature et Technologie, 1, 13-15.
Yevjevich, V. M. (1972). Probability and statistics in hydrology (pp. 126-133). Fort Collins, USA: Water Resources Publications.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.






