Hydraulic performance optimization of triangular-arced asymmetric labyrinth weirs: Experimental analysis of discharge efficiency and geometric variations

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-2026-01-08

Palabras clave:

Labyrinth weir, triangular plan weir, PKW, discharge coefficient

Resumen

This study examines the hydraulic performance of triangular-arced asymmetric labyrinth weirs with varying middle cycles, focusing on optimizing the discharge coefficient (Cd) under different geometric and hydraulic conditions. Experimental investigations were conducted in a flume with triangular-arced weirs featuring arc angles of 45°, 90°, and 135°. The results indicate that the highest Cd of 0.949 was achieved at a Froude number (Fr) of 1.64 and an arc angle of 90°, demonstrating optimal hydraulic performance. Wider intermediate cycles (R/W1 = 3.2) enhanced Cd to 0.949, while narrower cycles (R/W1 = 2.5) yielded a lower Cd of 0.633 due to increased turbulence and flow interference. The Q-Ht curves revealed that reducing the apex width (W1) increased upstream hydraulic head, enhancing discharge coefficient at low discharges but reducing hydraulic efficiency at higher discharges due to turbulence. These findings confirm that modifying intermediate cycles and optimizing arc angles can significantly improve hydraulic efficiency.

Referencias

Anderson, R. M., & Tullis, B. P. (2011). Comparison of piano key and rectangular labyrinth weir hydraulics. Journal of Hydraulic Engineering, 138(4), 358-361. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000509

Aydin, M. C., Ulu, A. E., & Işık, E. (2024). Determination of effective flow behaviors on discharge performance of trapezoidal labyrinth weirs using numerical and physical models. Modeling Earth Systems and Environment, 10, 3763-3776. DOI: https://doi.org/10.1007/s40808-024-01996-3

Azimi, A. H., & Hakim, S. S. (2019). Hydraulics of flow over rectangular labyrinth weirs. Irrigation Science, 37(2), 183-193. DOI: https://doi.org/10.1007/s00271-018-0616-6

Ben-Said, M., Hafnaoui, M. A., & Madi, M. (2023). Numerical analysis of the influence of approach flow conditions on the efficiency of labyrinth weir. Modeling Earth Systems and Environment, 9(1), 41-51. DOI: https://doi.org/10.1007/s40808-022-01443-1

Cassidy, J. J., Gardner, C. A., & Peacock, R. T. (1985). Boardman labyrinth crest spillway. Journal of Hydraulic Engineering, 111(3), 398-416. DOI: https://doi.org/10.1061/(asce)0733-9429(1985)111:3(398)

Darvas, L. (1971). Discussion of performance and design of labyrinth weirs. Journal of Hydraulic Engineering (ASCE), 97, 1246-1251. DOI: https://doi.org/10.1061/JYCEAJ.0003056

Dehghani, H. S., & Varaki, M. E. (2021). Experimental investigation of upstream sedimentation and downstream bed levels’ effects on discharge coefficients of trapezoidal labyrinth weirs. Arabian Journal of Geosciences, 14, 1-16. DOI: https://doi.org/10.1007/s12517-021-08339-x

Dizabadi, S., Hakim, S. S., & Azimi, A. H. (2020). Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Measurement and Instrumentation, 71, 101683. DOI: https://doi.org/10.1016/j.flowmeasinst.2019.101683

Falvey, H. T. (2003). Hydraulic design of labyrinth weirs. Reston, USA: ASCE Press (American Society of Civil Engineers). DOI: https://doi.org/10.1061/9780784406311

Ghare, A. D., Mhaisalkar, V. A., & Porey, P. D. (2008). An approach to optimal design of trapezoidal labyrinth weirs. World Applied Sciences Journal, 3(6), 934-938.

Gupta, K. K., Kumar, S., & Ahmad, Z. (2015). Effect of weir height on flow performance of sharp crested rectangular–planform weir. World Applied Sciences Journal, 33(1), 168-175.

Hashem, T., Mohammed, A. Y., & Alfatlawi, T. J. (2024). Hydraulic characteristics of labyrinth sluice gate. Flow Measurement and Instrumentation, 96, 102556. DOI: https://doi.org/10.1016/j.flowmeasinst.2024.102556

Hay, N., & Taylor, G. (1970). Performance and design of labyrinth weirs. Journal of Hydraulic Engineering, 96(11), 2337-2357. DOI: https://doi.org/10.1061/JYCEAJ.0002766

Khode, B. V., Tembhurkar, A. R., Porey, P. D., & Ingle, R. N. (2011). Determination of crest coefficient for flow over trapezoidal labyrinth weir. World Applied Sciences Journal, 12(3), 324-329.

Kumar, S., Ahmad, Z., Mansoor, T., & Himanshu, S. K. (2012). Discharge characteristics of sharp crested weir of curved plan-form. Research Journal of Engineering Sciences, 1(4), 16-20.

Le, A. T., Hiramatsu, K., & Nishiyama, T. (2021). Hydraulic comparison between piano key weir and rectangular labyrinth weir. Geomate Journal, 20(82), 153-160. DOI: https://doi.org/10.21660/2021.82.j2106

Majedi-Asl, M., Fuladipanah, M., Arun, V., & Tripathi, R. P. (2022). Using data mining methods to improve discharge coefficient prediction in Piano Key and Labyrinth weirs. Water Supply, 22(2), 1964-1982. DOI: https://doi.org/10.2166/ws.2021.304

Masoudi, M. H., Yari, A., Sadeghian, J., & Norouzi, H. (2024). Experimental investigation of the discharge coefficient of the rectangular and trapezoidal labyrinth weirs considering variable congress lengths. Modeling Earth Systems and Environment, 10, 2819-2832. DOI: https://doi.org/10.1007/s40808-023-01925-w

Mattos-Villarroel, E. D., Ojeda-Bustamante, W., Díaz-Delgado, C., Salinas-Tapia, H., Flores-Velázquez, J., & Bautista-Capetillo, C. (2023). Methodological proposal for the hydraulic design of Labyrinth Weirs. Water, 15(4), 722. DOI: https://doi.org/10.3390/w15040722

Mirnaseri, M., & Emadi, A. (2014). Hydraulic performance of combined flow labyrinth weir-gate. Advance in Agriculture and Biology, 2, 54-60. DOI: https://doi.org/10.15192/pscp.aab.2014.1.1.article1

Monjezi, R., Heidarnejad, M., Masjedi, A., Purmohammadi, M. H., & Kamanbedast, A. (2018). Laboratory investigation of the Discharge Coefficient of flow in arced labyrinth weirs with triangular plans. Flow Measurement and Instrumentation, 64, 64-70. DOI: https://doi.org/10.1016/j.flowmeasinst.2018.10.011

Namazi, F. S. A., & Mozaffari, J. (2023). Investigation of labyrinth weirs discharge coefficient with the same length. Flow Measurement and Instrumentation, 94, 102468. DOI: https://doi.org/10.1016/j.flowmeasinst.2023.102468

Said, M. B., & Ouamane, A. (2024). Discharge capacity of an improved form of labyrinth weir. In: Kalinowska, M. B., Mrokowska, M. M., & Rowiński, P.M. (eds.). Advances in hydraulic research. ISH 2023. GeoPlanet: Earth and planetary sciences. Cham, Switzerland: Springer. DOI: https://doi.org/10.1007/978-3-031-56093-4_2

Seyedian, S. M., Haghiabi, A., & Parsaie, A. (2023). Reliable prediction of the discharge coefficient of triangular labyrinth weir based on soft computing techniques. Flow Measurement and Instrumentation, 92, 102403. DOI: https://doi.org/10.1016/j.flowmeasinst.2023.102403

Taylor, G. (1968). The performance of labyrinth weirs (Doctoral Thesis). University of Nottingham, UK.

Wang, F., Zheng, S., Ren, Y., Liu, W., & Wu, C. (2022). Application of hybrid neural network in discharge coefficient prediction of triangular labyrinth weir. Flow Measurement and Instrumentation, 83, 102108. DOI: https://doi.org/10.1016/j.flowmeasinst.2021.102108

Zhu, X., Si, J., Xie, W., & Tan, L. (2024). Discussion of “Discharge coefficient of symmetrical stepped and triangular labyrinth side weirs in a subcritical flow regime”. Journal of Irrigation and Drainage Engineering, 150(3), 07024005. DOI: https://doi.org/10.1061/JIDEDH.IRENG-10230

Descargas

Publicado

2026-01-01

Número

Sección

Artículos

Cómo citar

Tabatabai, S. M., Heidranejad, M., Masjedi, A., & Bordbar, A. (2026). Hydraulic performance optimization of triangular-arced asymmetric labyrinth weirs: Experimental analysis of discharge efficiency and geometric variations. Tecnología Y Ciencias Del Agua, 17(1), 314-348. https://doi.org/10.24850/j-tyca-2026-01-08

Artículos similares

11-20 de 41

También puede Iniciar una búsqueda de similitud avanzada para este artículo.